Can you solve it for me?

Calculus Level 3

f ( k ) = 1 1 1 x 2 k + 1 x d x f(k) =\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{\sqrt{k+1} -x} dx

For f ( k ) f(k) as defined above, k = 0 99 f ( k ) = α π \displaystyle \sum_{k=0}^{99} f(k) =\alpha \pi . Find the value of α \alpha .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 26, 2019

We can write (using the substitution x = u x = -u and x = sin θ x = \sin\theta ) f ( k ) = 1 1 1 x 2 k + 1 x d x = 1 1 1 u 2 k + 1 + u d u = 1 2 ( 1 1 1 x 2 k + 1 x d x + 1 1 1 x 2 k + 1 + x d x ) = k + 1 1 1 1 x 2 k + 1 x 2 d x = k + 1 1 2 π 1 2 π cos 2 θ k + cos 2 θ d θ = π k + 1 k k + 1 1 2 π 1 2 π d θ k + cos 2 θ = π k + 1 2 k k + 1 1 2 π 1 2 π d θ 2 k + 1 + cos 2 θ = π k + 1 k k + 1 π π d θ 2 k + 1 + cos θ = π k + 1 2 k k + 1 i z = 1 d z z 2 + 2 ( 2 k + 1 ) z + 1 = π k + 1 2 k k + 1 i × 2 π i 4 k ( k + 1 ) = π ( k + 1 k ) \begin{aligned} f(k) \; = \; \int_{-1}^1 \frac{\sqrt{1-x^2}}{\sqrt{k+1}-x}\,dx & = \; \int_{-1}^1 \frac{\sqrt{1-u^2}}{\sqrt{k+1}+u}\,du \\ & = \; \frac12\left(\int_{-1}^1 \frac{\sqrt{1-x^2}}{\sqrt{k+1}-x}\,dx + \int_{-1}^1 \frac{\sqrt{1-x^2}}{\sqrt{k+1}+x}\,dx\right) \; = \; \sqrt{k+1}\int_{-1}^1 \frac{\sqrt{1-x^2}}{k+1 - x^2}\,dx \\ & = \; \sqrt{k+1} \int_{-\frac12\pi}^{\frac12\pi} \frac{\cos^2\theta}{k + \cos^2\theta}\,d\theta \; = \; \pi\sqrt{k+1} - k\sqrt{k+1}\int_{-\frac12\pi}^{\frac12\pi} \frac{d\theta}{k + \cos^2\theta} \\ & = \; \pi\sqrt{k+1} - 2k\sqrt{k+1}\int_{-\frac12\pi}^{\frac12\pi} \frac{d\theta}{2k + 1 + \cos2\theta} \; = \; \pi\sqrt{k+1} - k\sqrt{k+1}\int_{-\pi}^{\pi} \frac{d\theta}{2k + 1 + \cos\theta} \\ & =\; \pi\sqrt{k+1} - \frac{2k\sqrt{k+1}}{i}\int_{|z|=1} \frac{dz}{z^2 + 2(2k+1)z + 1} \; =\; \pi\sqrt{k+1} - \frac{2k\sqrt{k+1}}{i} \times \frac{2\pi i}{4\sqrt{k(k+1)}} \\ & = \; \pi(\sqrt{k+1} - \sqrt{k}) \end{aligned} after some standard contour integration. Thus S = π ( 100 0 ) = 10 π S = \pi(\sqrt{100}-\sqrt{0}) = \boxed{10}\pi .

nice sol....did the same way !!

Arghyadeep Chatterjee - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...