can you solve this?

Calculus Level 4

If 0 1 x 3 1 ln x d x = ln a \displaystyle \int_0^1 \frac{x^3 -1 }{\ln x } \ dx = \ln a , what is a a ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shashwat Shukla
Jan 5, 2015

Having a bit of trouble with Latex...

Can you explain me what you did in the second step?

A Former Brilliant Member - 3 years, 6 months ago
Vighnesh Raut
Dec 27, 2014

I = 0 1 x 3 1 log x d x = 0 1 x 3 l o g x d x 0 1 1 l o g x d x = I 1 I 2 I=\int _{ 0 }^{ 1 }{ \frac { { x }^{ 3 }-1 }{ \log { x } } dx } \\ \quad =\int _{ 0 }^{ 1 }{ \frac { { x }^{ 3 } }{ logx } dx } -\quad \int _{ 0 }^{ 1 }{ \frac { 1 }{ logx } dx } \\ \quad =\quad \quad \quad \quad { I }_{ 1 }\quad \quad \quad \quad -\quad \quad { I }_{ 2 }

I 1 = 0 1 x 3 l o g x d x = 0 1 4 4 x 3 l o g x d x = 0 1 4 x 3 l o g x 4 d x L e t x 4 = t 4 x 3 d x = d t w h e n x 0 , t 0 x 1 , t 1 S o , I 1 = 0 1 1 l o g t d t { I }_{ 1 }=\int _{ 0 }^{ 1 }{ \frac { { x }^{ 3 } }{ logx } } dx\\ \quad =\int _{ 0 }^{ 1 }{ \frac { 4 }{ 4 } \frac { { x }^{ 3 } }{ logx } } dx\\ \quad =\int _{ 0 }^{ 1 }{ \frac { { 4x }^{ 3 } }{ { log\quad x }^{ 4 } } dx } \quad \quad \\ \quad Let\quad { x }^{ 4 }=t\\ \quad \quad \quad \quad 4{ x }^{ 3 }dx=dt\\ when\quad x\rightarrow 0,\quad t\rightarrow 0\\ \quad \quad \quad \quad \quad x\rightarrow 1,\quad t\rightarrow 1\\ So,\\ { I }_{ 1 }=\int _{ 0 }^{ 1 }{ \frac { 1 }{ logt } } dt

H e n c e , I = I 1 I 2 = 0 1 1 l o g t d t 0 1 1 l o g x d x = 0 = l o g 1 Hence,\\ I=\quad { I }_{ 1 }\quad -\quad { I }_{ 2 }\\ =\int _{ 0 }^{ 1 }{ \frac { 1 }{ logt } dt } \quad -\quad \int _{ 0 }^{ 1 }{ \frac { 1 }{ logx } } dx\\ =\quad 0\\ =\quad log1

Please tell me where am I wrong ??

Firstly notice both the integrals seperately are diverging integrals.

Hence what you are trying to say is that = 0 \infty - \infty =0 , which is not true.

Ronak Agarwal - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...