Can you solve this equation?

Level 1

1 + 2 + 3 + 4 + + x 2 2 + x 2 1 = 34 ⌊\sqrt{1}⌋+⌊\sqrt{2}⌋+⌊\sqrt{3}⌋+⌊\sqrt{4}⌋+⋯+⌊\sqrt{x^{2}-2}⌋ +⌊\sqrt{x^{2}-1}⌋ =34 , where x x is a natural number.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 13, 2018

Let the LHS of the equation be S ( x ) S(x) as follows:

S ( x ) = 1 + 2 + 3 + 4 + + x 2 1 = 1 + 1 + 1 1 ( 2 2 1 2 ) + 4 + 2 + + 2 2 ( 3 2 2 2 ) + 9 + 3 + + 3 3 ( 4 2 3 2 ) + 16 + + ( x 1 ) 2 + + x 2 1 ( x 1 ) ( x 2 ( x 1 ) 2 ) = k = 1 x 1 k ( ( k + 1 ) 2 k 2 ) = k = 1 x 1 k ( 2 k + 1 ) = k = 1 x 1 ( 2 k 2 + k ) = x ( x 1 ) ( 2 x 1 ) 3 + x ( x 1 ) 2 = x ( x 1 ) ( 4 x + 1 ) 6 \begin{aligned} S(x) & = \lfloor \sqrt 1 \rfloor + \lfloor \sqrt 2 \rfloor + \lfloor \sqrt 3 \rfloor + \lfloor \sqrt 4 \rfloor + \cdots + \lfloor \sqrt {x^2-1} \rfloor \\ & = \underbrace{1 + 1 + 1}_{1(2^2-1^2)} + \underbrace{\lfloor \sqrt 4 \rfloor + 2 + \cdots + 2}_{2(3^2-2^2)} + \underbrace{\lfloor \sqrt 9 \rfloor + 3 + \cdots + 3}_{3(4^2-3^2)} + \lfloor \sqrt {16} \rfloor + \cdots + \underbrace{\lfloor \sqrt {(x-1)^2} \rfloor + \cdots + \lfloor \sqrt {x^2-1} \rfloor}_{(x-1)(x^2 - (x-1)^2)} \\ & = \sum_{k=1}^{x-1} k((k+1)^2-k^2) = \sum_{k=1}^{x-1} k(2k+1) = \sum_{k=1}^{x-1} (2k^2 + k) \\ & = \frac {x(x-1)(2x-1)}3 + \frac {x(x-1)}2 \\ & = \frac {x(x-1)(4x+1)}6 \end{aligned}

For S ( x ) = 34 S(x) = 34 , we have:

x ( x 1 ) ( 4 x + 1 ) 6 = 34 x ( x 1 ) ( 4 x + 1 ) = 204 4 x 3 3 x 2 x 204 = 0 ( x 4 ) ( 4 x 2 + 13 x + 51 ) = 0 x = 4 \begin{aligned} \frac {x(x-1)(4x+1)}6 & = 34 \\ x(x-1)(4x+1) & = 204 \\ 4x^3-3x^2-x - 204 & = 0 \\ (x-4)(4x^2+13x+51) & = 0 \\ \implies x & = \boxed 4 \end{aligned}

Roger Erisman
Sep 13, 2018

Floor function of first three natural numbers gives 1. 3*1=3. Total = 3

Floor function of next five gives 2. 5*2=10. Total = 13

Floor function of next seven gives 3. 7*3=21. Total = 34

3+5+7=15.

X^2-1=15.

x = 4.

That's the simplest approach!!! Very good!!!

A Former Brilliant Member - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...