Can you solve this in 1/6 minutes?

Algebra Level 2

Evaluate

log 10 5 4 + log 10 6 5 + log 10 7 6 + . . . + log 10 4000 3999 \large{\log_{10} \frac{5}{4} + \log_{10} \frac{6}{5} + \log_{10} \frac{7}{6} + ... + \log_{10} \frac{4000}{3999}}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Hans
Nov 1, 2015

we know that l o g ( a ) + l o g ( b ) = l o g ( a b ) , a , b > 0 log(a) + log(b) = log(a*b), a, b > 0 .
so, l o g ( 5 4 ) + l o g ( 6 5 ) + . . . + l o g ( 4000 3999 ) log(\frac{5}{4}) + log(\frac{6}{5}) + ... + log(\frac{4000}{3999}) is:

l o g ( 5 4 6 5 7 6 . . . 4000 3999 ) log(\frac{5}{4} * \frac{6}{5} * \frac{7}{6} * ... * \frac{4000}{3999}) .

Notice that 5 4 \frac{5}{4} and 6 5 \frac{6}{5} and other fractions cancel out into 4000 4 \frac{4000}{4} .

We left with l o g ( 4000 4 ) log(\frac{4000}{4}) or l o g ( 1000 ) log(1000) , which is 3 3 .

log 10 5 4 + log 10 6 5 + log 10 7 6 + . . . + log 10 4000 3999 \large{\log_{10} \frac{5}{4} + \log_{10} \frac{6}{5} + \log_{10} \frac{7}{6} + ... + \log_{10} \frac{4000}{3999}}

= l o g 10 ( 5 4 × 6 5 × 7 6 × 4000 3999 ) = \large{log_{10} ( \frac{5}{4} \times \frac{6}{5} \times \frac{7}{6} \times \cdots \frac{4000}{3999} ) }

= l o g 10 4000 4 = l o g 10 1000 = 3 = \large{log_{10} \frac{4000}{4}} = \large{log_{10} 1000} = \large{\boxed{3}}

Moderator note:

Simple standard approach.

Nice solution, brother!

Anibrata Bhattacharya - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...