Given that A is the set of the answer(s) of the equation :
= 126
What is the sum of the element(s) in set A?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
5 1 + x 2 − 4 x − 1 + 5 2 + x 2 − 4 x − 1 5 + 4 x − x 2 = 5 1 ⋅ 5 x 2 − 4 x − 1 + 5 2 + x 2 − 4 x − 1 5 + 4 x − x 2 ⋅ 2 − x 2 − 4 x − 1 2 − x 2 − 4 x − 1 = 5 ⋅ 5 x 2 − 4 x − 1 + 5 4 − ( x 2 − 4 x − 1 ) ( 5 + 4 x − x 2 ) ( 2 − x 2 − 4 x − 1 ) = 5 ⋅ 5 x 2 − 4 x − 1 + 5 5 + 4 x − x 2 ( 5 + 4 x − x 2 ) ( 2 − x 2 − 4 x − 1 ) = 5 ⋅ 5 x 2 − 4 x − 1 + 5 2 − x 2 − 4 x − 1 = 5 ⋅ 5 x 2 − 4 x − 1 + 5 x 2 − 4 x − 1 5 2 = 1 2 6 1 2 6 1 2 6 1 2 6 1 2 6 1 2 6
Let a = 5 x 2 − 4 x − 1 That is,
5 a + a 2 5 = 5 a 2 + 2 5 = 5 a 2 − 1 2 6 a + 2 5 = ( 5 a − 1 ) ( a − 2 5 ) = a = 1 2 6 1 2 6 a 0 0 5 1 , 2 5
Case ( 1 ) : a = 5 1 That is,
5 x 2 − 4 x − 1 = 5 x 2 − 4 x − 1 = x 2 − 4 x − 1 = 5 1 5 − 1 − 1
But x 2 − 4 x − 1 ≥ 0 Thus, this case has no real solution.
Case ( 2 ) : a = 2 5 That is,
5 x 2 − 4 x − 1 = 5 x 2 − 4 x − 1 = x 2 − 4 x − 1 = x 2 − 4 x − 1 = x 2 − 4 x − 5 = ( x + 1 ) ( x − 5 ) = x = 2 5 5 2 2 4 0 0 − 1 , 5
Hence, A = { − 1 , 5 } and the sum of the elements in set A is − 1 + 5 = 4