Can you solve this system of equations

Algebra Level 4

Given the following system of equations:- a m b n = x a^{m}b^{n}=x c m d n = y c^{m}d^{n}=y Where a,b,c,d,x,y,m and n are non zero positive real numbers Find out the value of m+n

l o g ( x y ) l o g ( a ) + l o g ( y x ) l o g ( b ) l o g ( x ) l o g ( y ) \frac{log(\frac{x}{y})log(a)+log(\frac{y}{x})log(b)}{log(x)-log(y)} l o g ( a ) l o g ( c ) l o g ( b ) l o g ( d ) l o g ( x ) l o g ( y ) \frac{log(a)log(c)-log(b)log(d)}{log(x)-log(y)} l o g ( x ) l o g ( d c ) l o g ( y ) l o g ( b a ) l o g ( a ) l o g ( d ) l o g ( b ) l o g ( c ) \frac{log(x)log(\frac{d}{c})-log(y)log(\frac{b}{a})}{log(a)log(d)-log(b)log(c)} l o g ( a b ) l o g ( b c ) l o g ( x ) l o g ( a ) l o g ( y ) l o g ( b ) \frac{log(ab)-log(bc)}{log(x)log(a)-log(y)log(b)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mateus Gomes
Feb 5, 2016

l o g ( a m b n ) = l o g ( x ) \Rightarrow {\color{#D61F06}{log(a^mb^n)=log(x)}} m l o g ( a ) + n l o g ( b ) = l o g ( x ) \Rightarrow mlog(a)+nlog(b)=log(x) n = l o g ( x ) m l o g ( a ) l o g ( b ) \Rightarrow n=\frac{log(x)-mlog(a)}{log(b)} m = l o g ( x ) n l o g ( b ) l o g ( a ) \Rightarrow m=\frac{log(x)-nlog(b)}{log(a)} l o g ( c m d n ) = l o g ( y ) \Rightarrow {\color{#3D99F6}{log(c^md^n)=log(y)}} m l o g ( c ) + n l o g ( d ) = l o g ( y ) \Rightarrow mlog(c)+nlog(d)=log(y) m l o g ( c ) + l o g ( x ) m l o g ( a ) l o g ( b ) l o g ( d ) = l o g ( y ) \Rightarrow mlog(c)+\frac{log(x)-mlog(a)}{log(b)}log(d)=log(y) m l o g ( c ) l o g ( b ) + [ l o g ( x ) m l o g ( a ) ] l o g ( d ) = l o g ( y ) l o g ( b ) \Rightarrow mlog(c)log(b)+[log(x)-mlog(a)] log(d)=log(y)log(b) m = l o g ( y ) l o g ( b ) l o g ( d ) l o g ( x ) l o g ( c ) l o g ( b ) l o g ( d ) l o g ( a ) \Rightarrow {\color{#302B94}{m=\frac{log(y)log(b)-log(d)log(x)}{log(c)log(b)-log(d)log(a)}}} l o g ( x ) n l o g ( b ) l o g ( a ) l o g ( c ) + n l o g ( d ) = l o g ( y ) \Rightarrow \frac{log(x)-nlog(b)}{log(a)}log(c)+nlog(d)=log(y) [ l o g ( x ) n l o g ( b ) ] l o g ( c ) + n l o g ( d ) l o g ( a ) = l o g ( y ) l o g ( a ) \Rightarrow [log(x)-nlog(b)]log(c)+ nlog(d)log(a)=log(y)log(a) n = l o g ( x ) l o g ( c ) l o g ( y ) l o g ( a ) l o g ( c ) l o g ( b ) l o g ( d ) l o g ( a ) \Rightarrow {\color{#20A900}{n=\frac{log(x)log(c)-log(y)log(a)}{log(c)log(b)-log(d)log(a)}}} m + n = l o g ( y ) l o g ( b ) l o g ( d ) l o g ( x ) + l o g ( x ) l o g ( c ) l o g ( y ) l o g ( a ) l o g ( c ) l o g ( b ) l o g ( d ) l o g ( a ) \Rightarrow {\color{#EC7300}{m+n=\frac{log(y)log(b)-log(d)log(x)+log(x)log(c)-log(y)log(a)}{log(c)log(b)-log(d)log(a)}}} m + n = l o g ( x ) l o g ( d c ) l o g ( y ) l o g ( b a ) l o g ( a ) l o g ( d ) l o g ( b ) l o g ( c ) \Rightarrow {\color{#3D99F6}{\boxed{m+n=\frac{log(x)log(\frac{d}{c})-log(y)log(\frac{b}{a})}{log(a)log(d)-log(b)log(c)}}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...