Can you solve this without calculator attack ( Part 2)?

Geometry Level 2

sin 1 8 = ? \large \sin 18^{\circ} = \ ?

1 + 5 4 \frac{-1 + \sqrt{5}}{4} 1 5 4 \frac{1 - \sqrt{5}}{4} 1 + 5 2 \frac{ -1 + \sqrt{5}}{2} 1 5 2 \frac{ 1- \sqrt{5}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Otto Bretscher
Apr 15, 2015

The attached figure almost offers a "proof without words." By similar triangles we have x 1 = x + 1 x \frac{x}{1}=\frac{x+1}{x} , so that x = ϕ x=\phi , the golden section. Bisecting the angle at point A A , we see that sin ( 1 8 o ) = 1 2 ϕ = 1 5 + 1 = 5 1 4 \sin(18^o)=\frac{\frac{1}{2}}{\phi}=\frac{1}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{4}

Moderator note:

I'm speechless, well done!

i dnt quite get it :(

Nithin Nithu - 5 years, 5 months ago

wow! take a bow Sir!

Aditya Pappula - 6 years, 2 months ago

This is sublime. :)

Brian Charlesworth - 6 years, 2 months ago

respect totally awesome!

Hao Zhe Loh - 6 years, 2 months ago

The best one

Aditya Gupta - 6 years, 1 month ago

This is outstanding! Simple n elegant!

Shabihe Baqri - 5 years, 3 months ago

Out of the world..!

Bhupendra Jangir - 5 years, 3 months ago

We can make use of the identities sin ( 3 x ) = 3 sin ( x ) 4 sin 3 ( x ) \sin(3x) = 3\sin(x) - 4\sin^{3}(x) and cos ( 2 x ) = 1 2 sin 2 ( x ) . \cos(2x) = 1 - 2\sin^{2}(x). With x = 1 8 x = 18^{\circ} and letting t = sin ( 1 8 ) t = \sin(18^{\circ}) we have that sin ( 5 4 ) = sin ( 3 1 8 ) = 3 t 4 t 3 \sin(54^{\circ}) = \sin(3*18^{\circ}) = 3t - 4t^{3} and cos ( 3 6 ) = 1 2 t 2 . \cos(36^{\circ}) = 1 - 2t^{2}.

But sin ( 5 4 ) = cos ( 3 6 ) , \sin(54^{\circ}) = \cos(36^{\circ}), so

3 t 4 t 3 = 1 2 t 2 4 t 3 2 t 2 3 t + 1 = 0 ( t 1 ) ( 4 t 2 + 2 t 1 ) = 0. 3t - 4t^{3} = 1 - 2t^{2} \Longrightarrow 4t^{3} - 2t^{2} - 3t + 1 = 0 \Longrightarrow (t - 1)(4t^{2} + 2t - 1) = 0.

Now clearly t 1 , t \ne 1, so t t must be a root of 4 t 2 + 2 t 1 4t^{2} + 2t - 1 , i.e.,

t = 2 ± 4 + 16 8 = 1 ± 5 4 . t = \dfrac{-2 \pm \sqrt{4 + 16}}{8} = \dfrac{-1 \pm \sqrt{5}}{4}.

Now clearly t = sin ( 1 8 ) > 0 , t = \sin(18^{\circ}) \gt 0, so we must have sin ( 1 8 ) = 1 + 5 4 . \sin(18^{\circ}) = \boxed{\dfrac{-1 + \sqrt{5}}{4}}.

Moderator note:

Nicely done! You made a simple connection by setting up sin ( 5 4 ) = cos ( 3 6 ) \sin(54^\circ) = \cos(36^\circ) .

clear and nice solving

Harshdeep Singh - 6 years, 2 months ago

use the formulas: sin(x) = cos(90°-x) cos(2x) = 1 - 2 sin²(x) cos²(x) = 1 - sin²(x) sin(2x) = 2 sin(x) cos(x)

so,

sin(18°) = cos(90°-18°) sin(18°) = cos(72°) sin(18°) = cos(2(2 18°)) sin(18°) = 1 - 2sin²(2 18°) sin(18°) = 1 - 2(sin(2*18°))² sin(18°) = 1 - 2(2 sin(18°) cos(18°))² sin(18°) = 1 - (8sin²(18°) cos²(18°)) sin(18°) = 1 - (8sin²(18°)(1 - sin²(18°))) sin(18°) = 1 - 8sin²(18°) + 8sin⁴(18°) 8sin⁴(18°) - 8sin²(18°) -sin(18°) + 1 = 0

suppose sin(18°) = x

8x⁴ - 8x² - x + 1 = 0 the roots are:

x 1 = 1 x 2 = -½ x 3 = -¼ (1 + √5) x 4 = ¼ (-1 + √5)

so;

sin(18°) = 1 ............................(false) sin(18°) = -½ ........................(false) sin(18°) = -¼ (1 + √5)......... (false. must positive) sin (18°) = ¼ (-1 + √5)...........(true)

Handayani Basuki - 6 years, 2 months ago

U have given an excellent explanation than that of others.,good.,keep going.,

Ramkumar G - 6 years, 2 months ago
Pi Han Goh
Apr 14, 2015

I used Chebyshev Polynomials .

sin ( 1 8 ) = cos ( 7 2 ) \sin(18^\circ ) = \cos(72^\circ ) . With T 5 ( x ) = 16 x 5 20 x 3 + 5 x T_5 (x)= 16x^5 - 20x^3 + 5x which could be easily verified. Letting x = 7 2 5 x = 36 0 cos ( 5 x ) = 1 x = 72^\circ \Rightarrow 5x = 360^\circ \Rightarrow \cos(5x) = 1 and let y = cos ( x ) y = \cos (x) :

We have 16 y 5 20 y 3 + 5 y = 1 16y^5 - 20y^3 + 5y = -1 . By Rational Root Theorem, we can factor out ( y + 1 ) (y+1) , leaving: 16 y 4 16 y 3 4 y 2 + 4 y + 1 = ( 4 y 2 2 y 1 ) 2 16y^4 - 16y^3 -4y^2 + 4y + 1 = (4y^2 - 2y - 1)^2 . By quadratic formula and taking only the positive root: sin ( 1 8 ) = cos ( 7 2 ) = 1 + 5 4 \sin(18^\circ ) = \cos(72^\circ ) = \boxed{\frac{ -1 + \sqrt 5}{4 }} .

Moderator note:

Impractical but correct.

cos 5x = 1 not -1

Gamal Sultan - 6 years, 2 months ago

Log in to reply

FIXED thanks

Pi Han Goh - 6 years, 2 months ago

@Trevor Arashiro , does this interest you?

Pi Han Goh - 6 years, 2 months ago
Gamal Sultan
Apr 14, 2015

Let x = 18

Then 5 x = 90

Then

sin 2 x = cos 3 x .................. .....................(1)

sin 2 x = 2 sin x cos x ............................. (2)

cos 3 x = cos (2 x + x) = cos 2 x cos x - sin 2 x sin x =

[1 - 2 (sin x)^2] cos x - 2 cos x (sin x)^2

Then

cos 3 x = cos x[1 - 4 (sin x)^2] ............. (3)

Substitute from (2) , (3) in (1)

4 (sin x)^2 + 2 sin x - 1 = 0

Solving for sin x, we get the solution

Souryajit Roy
Apr 13, 2015

Consider the equation x 5 1 = 0 x^{5}-1=0 .

The complex roots of the above equation are the roots of x 4 + x 3 + x 2 + x + 1 = 0 x^{4}+x^{3}+x^{2}+x+1=0

Hence, x 2 + 1 x 2 + x + 1 x + 1 = 0 x^{2}+\frac{1}{x^{2}}+x+\frac{1}{x}+1=0

Letting, z = x + 1 x z=x+\frac{1}{x} the equation becomes z 2 + z 1 = 0 z^{2}+z-1=0 giving z = 1 + 5 2 z=\frac{-1_{-}^{+}\sqrt{5}}{2}

The values of x x are c o s ( 2 r π 5 ) + i s i n ( 2 r π 5 ) cos(\frac{2rπ}{5})_{-}^{+}isin(\frac{2rπ}{5}) for r = 1 , 2 r=1,2

Hence, the values of z z are 2 c o s ( 2 π 5 ) 2cos(\frac{2π}{5}) and 2 c o s ( 4 π 5 ) 2cos(\frac{4π}{5})

Now, c o s ( 4 π 5 ) = c o s ( π 5 ) cos(\frac{4π}{5})=-cos(\frac{π}{5}) .

Hence, c o s ( π 5 ) = c o s 36 ( d e g r e e s ) = 5 + 1 4 cos(\frac{π}{5})=cos36(degrees)=\frac{\sqrt{5}+1}{4} .

Now using the formula, c o s 2 A = 1 2 s i n 2 A cos2A=1-2sin^{2}A one can easily find the value of s i n 18 sin18

Moderator note:

Nice use of roots of unity!

Caleb Townsend
Apr 7, 2015

This could be solved geometrically, but I solved it with the small angle approximation. First convert to radians 1 8 = 18 180 π = π 10 . 314 18^\circ = \frac{18}{180}\pi = \frac{\pi}{10} \\ \approx .314 π 10 \frac{\pi}{10} is a sufficiently small angle, so by the small angle approximation, sin π 10 π 10 \sin\frac{\pi}{10} \approx \frac{\pi}{10} Note that 4 × . 314 = 1.256 5 1. 4\times .314 = 1.256 \approx \sqrt{5} - 1. So a possible closed form is 1 + 5 4 \frac{-1 + \sqrt{5}}{4}

Moderator note:

This solution has been marked wrong. Your solution only shows that it approximately equals to 1 + 5 4 \frac {-1 + \sqrt 5 }{4} and you did not mention the error term. You are not advised to post an antisolution. If you did post one, you should post something like this:

Because 0 < 1 8 < 3 0 0^\circ < 18^\circ < 30^\circ with sin ( 3 0 ) = 1 2 \sin \left (30^\circ \right ) = \frac 1 2 , then the only possible solution from the given choices is positive and less than 1 2 \frac 1 2 is 1 + 5 4 \frac {-1 + \sqrt 5 }{4} .

Mas Mus
May 4, 2015

Since sin 1 8 = cos 7 2 \sin18^\circ=\cos72^\circ , we will determine value of cos 7 2 \cos72^\circ

Set z = cos 7 2 + i sin 7 2 z=\cos72^\circ+i\sin72^\circ , we have then z + 1 z = 2 cos 7 2 z+\frac{1}{z}=2\cos72^\circ

Now, using De Moivre's Therome, we obtain

z 5 = cos 36 0 + i sin 36 0 = 1 ( z 1 ) ( z 4 + z 3 + z 2 + z + 1 ) = 0 z^5=\cos360^\circ+i\sin360^\circ=1\\(z-1)(z^4+z^3+z^2+z+1)=0

It gives two condition. First, z 1 = 0 z = 1 z-1=0\implies{z=1} , for z = 1 z=1 , then z + 1 z = 1 + 1 = 2 cos 7 2 or cos 7 2 = 1 z+\frac{1}{z}=1+1=2\cos72^\circ\text{or}\cos72^\circ=1 . This result is obviously wrong since 1 = cos 0 1=\cos0^\circ .

Second,

z 4 + z 3 + z 2 + z + 1 ) = 0 ( z 2 + 1 z 2 ) + ( z + 1 z ) + 1 = 0 ( z + 1 z ) 2 + ( z + 1 z ) 1 = 0 ( z + 1 z ) = 1 ± 5 2 2 cos 7 2 = 1 ± 5 2 cos 7 2 = 1 ± 5 4 z^4+z^3+z^2+z+1)=0\\\left(z^2+\dfrac{1}{z^2}\right)+\left(z+\dfrac{1}{z}\right)+1=0\\\left(z+\dfrac{1}{z}\right)^2+\left(z+\dfrac{1}{z}\right)-1=0\\\left(z+\dfrac{1}{z}\right)=\dfrac{-1\pm\sqrt{5}}{2}\\2\cos72^\circ=\dfrac{-1\pm\sqrt{5}}{2}\\\cos72^\circ=\dfrac{-1\pm\sqrt{5}}{4} .

We know that cos 7 2 \cos72^\circ is positive, then the required answer is cos 7 2 = 1 + 5 4 \cos72^\circ=\dfrac{-1+\sqrt{5}}{4}

Chew-Seong Cheong
Apr 14, 2018

Note that sin 1 8 = sin π 10 = cos ( π 2 π 10 ) = cos 2 π 5 \sin 18^\circ = \sin \frac \pi {10} = \cos \left(\frac \pi 2-\frac \pi {10}\right) = \cos \frac {2\pi}5 . Using the following identity:

cos 2 π 5 + cos 4 π 5 = 1 2 cos 2 π 5 + 2 cos 2 2 π 5 1 = 1 2 4 cos 2 2 π 5 + 2 cos 2 π 5 1 = 0 cos 2 π 5 = 2 + 2 2 + 16 8 Note that cos 2 π 5 > 0 sin 1 8 = 1 + 5 4 \begin{aligned} \cos \frac {2\pi}5 + \cos \frac {4\pi}5 & = - \frac 12 \\ \cos \frac {2\pi}5 + 2\cos^2 \frac {2\pi}5 - 1 & = - \frac 12 \\ 4 \cos^2 \frac {2\pi}5 + 2\cos \frac {2\pi}5 - 1 & = 0 \\ \implies \cos \frac {2\pi}5 & = \frac {-2+\sqrt{2^2+16}}8 & \small \color{#3D99F6} \text{Note that }\cos \frac {2\pi}5 > 0 \\ \sin 18^\circ & = \boxed{\dfrac {-1+\sqrt 5}4} \end{aligned}

Amed Lolo
Jan 11, 2016

Sin 18 always positive ,,,1-√5\4&1-√5\2 are wrong answers,,,,assume a right angle triangle ,assume sin 18=(-1+√5)\4=opposite \hypotenuse, so adjacent side to angle =√(16-(-1+√5)^2)=√(10+2√5),so cos(18)=√(10+2√5)\4,sin^2(18)+cos^2(18) must be =1,sin^2(18)=(-1+√5)^2\16=6-2√5\16,,,cos^2(18)=√(10+2√5)^2\16=10+2√5\16,sin^2(18)+cos^2 (18)=6-2√5+10+2√5\16=16\16=1###-1+√5\4 is the right answer .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...