Nested Radical

Algebra Level 2

1 + 2 1 + 3 1 + 4 1 + 5 1 + = ? \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}}=?

Solve it without using a calculator.

21 147 3 1029

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 21, 2019

Let f ( x ) = x + 1 f(x) = x+1 . Then

f ( x ) = x + 1 = ( x + 1 ) 2 = 1 + x 2 + 2 x = 1 + x ( x + 2 ) Note that x + 2 = x + 1 + 1 = f ( x + 1 ) = 1 + x f ( x + 1 ) = 1 + x 1 + ( x + 1 ) f ( x + 2 ) = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) f ( x + 3 ) x + 1 = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) 1 + ( x + 3 ) 1 + Putting x = 2 3 = 1 + 2 1 + 3 1 + 4 1 + 5 1 + \begin{aligned} f(x) & = x+1 = \sqrt{(x+1)^2} = \sqrt{1+x^2+2x} = \sqrt{1+x\color{#3D99F6}(x+2)} & \small \color{#3D99F6} \text{Note that } x+2 = x+1 +1 = f(x+1) \\ & = \sqrt{1+xf(x+1)} \\ & = \sqrt{1+x\sqrt{1+(x+1)f(x+2)}} \\ & = \sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)f(x+3)}}} \\ \implies x + 1 & = \sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+(x+3)\sqrt{1+\cdots}}}}} & \small \color{#3D99F6} \text{Putting }x=2 \\ \implies \boxed 3 & = \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}} \end{aligned}

  1. In Brilliant's own wiki: Nested Functions . There is a link in the wiki page to a previous posting.

  2. Previously posted: Nested Radicals

  3. See Chew-Seong Cheong 's adjoining excellent solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...