Can You solve this? You are great then. Feel Proud

Calculus Level 3

π π ( cos x ) 2 1 + a x d x \int _{ -\pi }^{ \pi }{ \frac { { \left( \cos { x } \right) }^{ 2 } }{ 1+{ a }^{ x } } } \ \mathrm dx

For a constant a > 0 a > 0 , evaluate the integral above.

a π a\pi π 2 \frac { \pi }{ 2 } 2 π 2\pi π a \frac { \pi }{ a }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aniket Verma
Mar 25, 2015

I = π π ( cos x ) 2 1 + a x d x I = \displaystyle \int _{ -\pi }^{ \pi }{ \frac { { \left( \cos { x } \right) }^{ 2 } }{ 1+{ a }^{ x } } } dx

I = π π ( cos ( x ) ) 2 1 + a x d x \implies I = \displaystyle\int _{ -\pi }^{ \pi }{ \frac { { \left( \cos { (-x) } \right) }^{ 2 } }{ 1+{ a }^{ -x } } } dx

2 I = π π c o s 2 x d x = 2 0 π c o s 2 x d x \therefore ~ 2I=\displaystyle\int _{ -\pi }^{ \pi }{ { cos }^{ 2 }x } dx~ =~ 2\int _{ 0 }^{ \pi }{ { cos }^{ 2 }x } dx

I = 0 π 1 + c o s 2 x 2 d x = [ x 2 + s i n 2 x 4 ] 0 π = π 2 \implies I=\displaystyle\int _{ 0 }^{ \pi }{ \frac { 1+cos2x }{ 2 } } dx\quad =\quad \left[ \frac { x }{ 2 } +\frac { sin2x }{ 4 } \right] _{ 0 }^{ \pi }=~ \frac { \pi }{ 2 }

Can yoi explain more

Mohamed Kasim - 6 years, 2 months ago

Log in to reply

Just to add to Aniket's comment, note that

1 1 + a x + 1 1 + a x = ( 1 + a x ) + ( 1 + a x ) ( 1 + a x ) ( 1 + a x ) = 2 + a x + a x 2 + a x + a x = 1. \dfrac{1}{1 + a^{x}} + \dfrac{1}{1 + a^{-x}} = \dfrac{(1 + a^{-x}) + (1 + a^{x})}{(1 + a^{x})(1 + a^{-x})} = \dfrac{2 + a^{x} + a^{-x}}{2 + a^{x} + a^{-x}} = 1.

Brian Charlesworth - 6 years, 2 months ago

Log in to reply

Or, 1 1 + a x + 1 1 + a x = 1 1 + a x + a x 1 + a x = 1 + a x 1 + a x = 1 \displaystyle\dfrac{1}{1+a^x} + \dfrac{1}{1+a^{-x}} = \dfrac{1}{1+a^x} + \dfrac{a^x}{1+a^x} = \dfrac{1+a^x}{1+a^x}=1

Purushottam Abhisheikh - 6 years, 2 months ago

a b f ( x ) d x = a b f ( b + a x ) d x \because \displaystyle\int^{b}_{a}~f(x)dx = \int^{b}_{a}~f(b+a-x)dx . Using this you will get the second step. After this add first and second step to get the third one. I hope this will help you.

Aniket Verma - 6 years, 2 months ago

Log in to reply

Thank you very much

Mohamed Kasim - 6 years, 2 months ago
Shashank Rustagi
Mar 23, 2015

\int _{ -\pi }^{ \pi }{ \frac { { \left( \cos { x } \right) }^{ 2 } }{ 1+{ a }^{ x } } } dx can be written as \int _{ 0 }^{ \pi }{ cos(x) } dx

π π ( cos x ) 2 1 + a x d x \int _{ -\pi }^{ \pi }{ \frac { { \left( \cos { x } \right) }^{ 2 } }{ 1+{ a }^{ x } } } dx

0 π c o s ( x ) d x \int _{ 0 }^{ \pi }{ cos(x) } dx

Your Latex code gives the above output . You sure that it's correct ?

A Former Brilliant Member - 6 years, 2 months ago

Log in to reply

yes it is correct

Shashank Rustagi - 6 years, 2 months ago

Log in to reply

It should be 0 π c o s 2 ( x ) d x \displaystyle \int _{ 0 }^{ \pi }{ cos^{2}(x) } dx and not 0 π c o s ( x ) d x \displaystyle \int _{ 0 }^{ \pi }{ cos(x) } dx

Purushottam Abhisheikh - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...