Can you solve?

Algebra Level pending

{ b x + c y = a + b a x ( 1 a b 1 a + b ) + c y ( 1 b a 1 b + a ) = 2 a a + b \begin{cases} bx+cy = a+b \\ ax \left(\dfrac{1}{a-b}-\dfrac{1}{a+b}\right)+cy\left(\dfrac{1}{b-a}-\dfrac{1}{b+a}\right) =\dfrac{2a}{a+b} \end{cases}

In the system of equations above, a a , b b , and c c are constants, while x x and y y are variables. What is the value of c y x cyx ?

a a a c \frac{a}{c} b c \frac{b}{c} b b a b \frac{a}{b} c a c-a It is a numeric value c c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given b x + c y = a + b . . . ( 1 ) bx + cy = a + b \quad ...(1) and

a x ( 1 a b 1 a + b ) + c y ( 1 b a 1 a + b ) = 2 a a + b 2 a b x 2 c a y ( a b ) ( a + b ) = 2 a a + b b x c y = a b . . . ( 2 ) \begin{aligned} ax \left(\frac 1{a-b} - \frac 1{a+b} \right) + cy \left(\frac 1{b-a} - \frac 1{a+b} \right) & = \frac {2a}{a+b} \\ \frac {2abx - 2cay}{(a-b)(a+b)} & = \frac {2a}{a+b} \\ bx - cy & = a -b & ...(2) \end{aligned}

{ ( 1 ) + ( 2 ) : 2 b x = 2 a x = a b ( 1 ) ( 2 ) : 2 c y = 2 b c y = b c y x = b a b = a \begin{cases} (1)+(2): & 2bx = 2a & \implies x = \dfrac ab \\ (1)-(2): & 2cy = 2b & \implies cy = b \end{cases} \implies cyx = b \cdot \dfrac ab = \boxed a

The second equation is the same as

b x c y = a b bx-cy=a-b .

Solving this with the first equation we get x = a b , c y = b x=\frac{a}{b}, cy=b

c y x = b × a b = a \implies cyx =b\times \frac{a}{b}=\boxed a .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...