Can you use Dirichlet Kernel again?

Calculus Level 4

The Cesàro sum of n = 0 cos n \displaystyle \sum_{n=0}^\infty \cos n is equal to 1 2 \dfrac12 .

Is the Cesàro sum n = 0 sin n \displaystyle \sum_{n=0}^\infty \sin n also equal to 1 2 \dfrac12 ?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 11, 2017

Using the Eulerian form for s i n ( x ) = e i x e i x 2 i sin(x) = \frac{e^{ix} - e^{-ix}}{2i} , we now obtain:

n = 0 sin n = n = 0 e i n e i n 2 i = 1 2 i [ 1 1 e i 1 1 e i ] ; \sum_{n=0}^\infty \sin n = \sum_{n=0}^\infty \frac{e^{in} - e^{-in}}{2i} = \frac{1}{2i} \cdot [ \frac{1}{1-e^{i}} - \frac{1}{1-e^{-i}}];

or 1 2 i ( 1 e i ) ( 1 e i ) ( 1 e i ) ( 1 e i ) ; \frac{1}{2i} \cdot \frac{(1 - e^{-i}) - (1 - e^{i})}{(1 - e^{i})(1 - e^{-i})};

or [ e i e i 2 i ] [ 1 2 e i e i ] ; [\frac{e^{i} - e^{-i}}{2i}][\frac{1}{2 - e^{i} - e^{-i}}];

or s i n ( 1 ) 2 2 c o s ( 1 ) ; \frac{sin(1)}{2 - 2cos(1)};

or 1 2 s i n ( 1 ) 1 c o s ( 1 ) ; \frac{1}{2} \cdot \frac{sin(1)}{1 - cos(1)};

or 1 2 c o t ( 1 2 ) 1 2 . \frac{1}{2} \cdot cot(\frac{1}{2}) \neq \frac{1}{2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...