Can your calculator even compute this?

Geometry Level 4

1 0 1 0 10 sin ( 109 1 0 1 0 10 ) 9 9 9 sin ( 101 9 9 9 ) 8 8 8 sin ( 17 8 8 8 ) + 7 7 7 sin ( 76 7 7 7 ) + 6 6 6 sin ( 113 6 6 6 ) \begin{aligned} && 10^{10^{10}} \sin\left( \frac{109}{10^{10^{10}}} \right) - 9^{9^{9}} \sin\left( \frac{101}{9^{9^{9}}} \right) \\ &&- 8^{8^{8}} \sin\left( \frac{17}{8^{8^{8}}} \right) + 7^{7^{7}} \sin\left( \frac{76}{7^{7^{7}}} \right) + 6^{6^{6}} \sin\left( \frac{113}{6^{6^{6}}} \right) \end{aligned}

Evaluate the expression above to 4 significant figures.

Details and assumptions

  • Angles are measured in degrees.
  • No calculators allowed


The answer is 3.1416.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 14, 2015

lim x 0 sin x = x \lim_{x \to 0} \sin{x} = x (in radians), therefore,

1 0 1 0 10 sin ( 109 1 0 1 0 10 ) 9 9 9 sin ( 101 9 9 9 ) 8 8 8 sin ( 17 8 8 8 ) + 7 7 7 sin ( 76 7 7 7 ) + 6 6 6 sin ( 113 6 6 6 ) 109 π 180 101 π 180 17 π 180 + 76 π 180 + 113 π 180 = 180 π 180 = π = 3.142 \small 10^{10^{10}} \sin{\left( \frac{109}{10^{10^{10}}} \right)} - 9^{9^9} \sin{\left( \frac{101}{9^{9^9}} \right)} - 8^{8^8} \sin{\left( \frac{17}{8^{8^8}} \right)} + 7^{7^7} \sin{\left( \frac{76}{7^{7^7}} \right)} + 6^{6^6} \sin{\left( \frac{113}{6^{6^6}} \right)} \\ \approx \dfrac{109\pi}{180} - \dfrac{101\pi}{180} - \dfrac{17\pi}{180} + \dfrac{76\pi}{180} + \dfrac{113\pi}{180} = \dfrac{180\pi}{180} = \pi = \boxed{3.142}

I think this is the most efficient method to solving the problem. I used the equations lim x x sin ( y x ) = y \lim _{ x\rightarrow \infty }{ x\sin { (\frac { y }{ x } } ) } =y and lim x x tan ( y x ) = y \lim _{ x\rightarrow \infty }{ x\tan { (\frac { y }{ x } } ) } =y (in radians) which also works the same as the equations which you have used but are longer. However, I am not sure how you get from lim x x sin ( y x ) = y \lim _{ x\rightarrow \infty }{ x\sin { (\frac { y }{ x } } ) } =y to lim x 0 sin ( x ) = x \lim _{ x\rightarrow 0 }{ \sin { (x } ) } =x . It would be nice if you could explain how to get from one equation to the other.

Shavindra Jayasekera - 5 years, 9 months ago
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
We have to evaluate this first:

limit of u*sin( a / u ) as u approaches infinity where a = k*pi/180
Obviously the result will be indeterminate so we have to tweak it

sin( a/u ) / (1/u)
Apply L'Hospital's rule: 
cos(a/u) * a * (-1/u**2) / (-1/u**2)
a cos( a/u )

as u approaches infinity:
a cos(a/u) --> a

109 - 101 - 17 + 76 + 113 = 180
180*pi/180 = pi

pi = 3.1416 <-- Answer

The denominators are extremely large, so that the approximation sin x x \sin x \approx x works well here--but x x must be given in radians. Each term reduces to N sin ( a N ) N a N C = a C , N \sin\left(\frac {a^\circ} N\right) \approx N\cdot \frac a N \cdot C = a\cdot C, where C C is the conversion factor from degrees to radians. Thus the entire expression is approximately equal to ( 109 101 17 + 76 + 113 ) C = 180 C , (109 - 101 - 17 + 76 + 113) \cdot C = 180\cdot C, and we know that 18 0 180^\circ corresponds to π \pi radians. Therefore the answer is π = 3.1416 \approx \pi = 3.1416 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...