Can't apply Titu's directly

Algebra Level 5

cyc a b + b c + c a a ( a + 2 b ) \displaystyle \sum_{\text{cyc}} \dfrac{ab+bc+ca}{a(a+2b)}

If a a , b b and c c are positive reals, find the minimum value of the above expression.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sharky Kesa
Feb 3, 2017

cyc a b + b c + c a a ( a + 2 b ) = cyc a ( b + c ) + b c a ( a + 2 b ) = cyc b + c a + 2 b + cyc b c a ( a + 2 b ) \begin{aligned} \displaystyle \sum_{\text{cyc}} \dfrac{ab+bc+ca}{a(a+2b)} &= \displaystyle \sum_{\text{cyc}} \dfrac{a(b+c)+bc}{a(a+2b)}\\ &= \displaystyle \sum_{\text{cyc}} \dfrac{b+c}{a+2b} + \displaystyle \sum_{\text{cyc}} \dfrac{bc}{a(a+2b)} \end{aligned}

We will apply Cauchy-Schwarz on both these cyclic summations.

( cyc b + c a + 2 b ) ( cyc ( b + c ) ( a + 2 b ) ) ( cyc ( b + c ) ) 2 cyc b + c a + 2 b ( cyc ( b + c ) ) 2 cyc ( b + c ) ( a + 2 b ) = 4 ( a + b + c ) 2 2 ( a 2 + b 2 + c 2 ) + 4 ( a b + b c + c a ) = 2 \begin{aligned} \left ( \displaystyle \sum_{\text{cyc}} \dfrac{b+c}{a+2b} \right ) \left ( \displaystyle \sum_{\text{cyc}} (b+c)(a+2b) \right ) &\geq \left ( \displaystyle \sum_{\text{cyc}} (b+c) \right )^2\\ \displaystyle \sum_{\text{cyc}} \dfrac{b+c}{a+2b} &\geq \dfrac{\left ( \displaystyle \sum_{\text{cyc}} (b+c) \right )^2}{\displaystyle \sum_{\text{cyc}} (b+c)(a+2b)}\\ &= \dfrac {4 ( a+b+c)^2}{2(a^2+b^2+c^2)+4(ab+bc+ca)}\\ &= 2\\ \end{aligned}

( cyc b c a ( a + 2 b ) ) ( cyc a b c ( a + 2 b ) ) ( cyc b c ) 2 ( cyc b c a ( a + 2 b ) ) ( cyc b c ) 2 a b c ( cyc ( a + 2 b ) ) = ( cyc b c ) 2 3 a b c ( a + b + c ) = 1 + cyc a 2 ( b c ) 2 6 a b c ( a + b + c ) 1 \begin{aligned} \left ( \displaystyle \sum_{\text{cyc}} \dfrac{bc}{a(a+2b)} \right ) \left ( \displaystyle \sum_{\text{cyc}} abc (a+2b) \right ) &\geq \left ( \displaystyle \sum_{\text{cyc}} bc \right )^2\\ \left ( \displaystyle \sum_{\text{cyc}} \dfrac{bc}{a(a+2b)} \right ) &\geq \dfrac {\left ( \displaystyle \sum_{\text{cyc}} bc \right )^2}{ abc \left ( \displaystyle \sum_{\text{cyc}} (a+2b) \right )}\\ &= \dfrac {\left ( \displaystyle \sum_{\text{cyc}} bc \right )^2}{ 3abc (a+b+c)}\\ &= 1 + \dfrac{\displaystyle \sum_{\text{cyc}} a^2 (b-c)^2}{6abc (a+b+c)}\\ &\geq 1\\ \end{aligned}

Therefore, their sum must be greater than or equal to 3, with equality at a = b = c a=b=c .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...