Minimum too?

Algebra Level 5

( 4 x 2 + 3 y ) ( 4 y 2 + 3 x ) + 25 x y \large (4x^2+3y)(4y^2+3x)+25xy If x , y x,y are non-negative reals satisfy x + y = 1 x+y=1 , let the sum of the maximum and the minimum value of the expression above be m n \dfrac{m}{n} , where m m and n n are co-prime positive integers. Find m + n m+n

  • This problem is part of this set .


The answer is 407.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Mar 5, 2016

Call the expression P, multiply everything out and we get P = 16 ( x y ) 2 + 12 ( x 3 + y 3 ) + 9 x y + 25 x y = 16 ( x y ) 2 + 12 ( x + y ) 2 36 x y + 34 x y P=16(xy)^2+12(x^3+y^3)+9xy+25xy=16(xy)^2+12(x+y)^2-36xy+34xy P = 16 ( x y ) 2 2 x y + 12 \Leftrightarrow P=16(xy)^2-2xy+12 Now we let t = x y t=xy , then f ( t ) = 16 t 2 2 t + 12 f(t)=16t^2-2t+12 From the condition, we can prove that t [ 0 ; 1 4 ] t\in \big[0;\frac{1}{4}\big] , we see that P = 16 ( t 1 16 ) 2 + 191 16 191 16 P=16\bigg(t-\frac{1}{16}\bigg)^2+\frac{191}{16}\geq\frac{191}{16} The equality holds when t = 1 16 t=\frac{1}{16} which is in the range of t t

Now the only thing we have to do left is compare f ( 0 ) f(0) with f ( 1 4 ) f\big(\frac{1}{4}\big) . f ( 1 4 ) f\big(\frac{1}{4}\big) is larger so P f ( 1 4 ) = 25 2 P\leq f\bigg(\frac{1}{4}\bigg)=\frac{25}{2} m n = 191 16 + 25 2 = 391 16 m + n = 407 \therefore\frac{m}{n}=\frac{191}{16}+\frac{25}{2}=\frac{391}{16} \Rightarrow m+n=407 P reaches its minimum when ( x , y ) = ( 2 3 4 ; 2 + 3 4 ) (x,y)=\big(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\big) and its permutation, reaching its maximum when x = y = 1 2 x=y=\frac{1}{2}

I think you need to specify that f ( X ) = 16 X 2 2 X + 12 f(X) = 16X^2 - 2X + 12 . Otherwise, great solution. Thanks!

Pi Han Goh - 5 years, 2 months ago
Chew-Seong Cheong
Apr 26, 2016

X = ( 4 x 2 + 3 y ) ( 4 y 2 + 3 x ) + 25 x y = 16 x 2 y 2 + 12 x 3 + 12 y 3 + 9 x y + 25 x y = 16 x 2 y 2 + 12 ( x 3 + y 3 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) ( x 2 + y 2 x y ) + 34 x y = 16 x 2 y 2 + 12 ( x 3 + y 3 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) ( ( x + y ) 2 2 x y x y ) + 34 x y = 16 x 2 y 2 + 12 ( 1 3 x y ) + 34 x y = 16 x 2 y 2 2 x y + 12 X = ( 4 x y 1 4 ) 2 + 191 16 \begin{aligned} X & = (4x^2+3y)(4y^2+3x) + 25xy \\ & = 16x^2y^2 + 12x^3 + 12y^3 + 9xy + 25xy \\ & = 16x^2y^2 + 12(x^3 + y^3) + 34xy \\ & = 16x^2y^2 + 12(x+y)(x^2 + y^2-xy) + 34xy \\ & = 16x^2y^2 + 12(x^3 + y^3) + 34xy \\ & = 16x^2y^2 + 12(x+y)((x+y)^2-2xy-xy) + 34xy \\ & = 16x^2y^2 + 12(1-3xy) + 34xy \\ & = 16x^2y^2 -2xy + 12 \\ \implies X & = \left(4xy - \frac{1}{4}\right)^2 + \frac{191}{16} \end{aligned}

Since ( 4 x y 1 4 ) 2 0 \left(4xy - \dfrac{1}{4}\right)^2 \ge 0 , X m i n = 191 16 X_{min} = \dfrac{191}{16} .

X X is maximum when 4 x y 1 4 4xy - \dfrac{1}{4} is maximum. By AM-GM inequility, x + y 2 x y x+y \ge 2\sqrt{xy} 2 x y 1 \implies 2\sqrt{xy} \le 1 x y 1 4 \implies xy \le \dfrac{1}{4} . Therefore, X m a x = ( 4 × 1 4 1 4 ) 2 + 191 16 = 200 16 X_{max} = \left(4\times \dfrac{1}{4} - \dfrac{1}{4}\right)^2 + \dfrac{191}{16} = \dfrac{200}{16} .

And that X m a x + X m i n = 391 16 X_{max} + X_{min} = \dfrac{391}{16} m + n = 407 \implies m + n = \boxed{407}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...