( 4 x 2 + 3 y ) ( 4 y 2 + 3 x ) + 2 5 x y If x , y are non-negative reals satisfy x + y = 1 , let the sum of the maximum and the minimum value of the expression above be n m , where m and n are co-prime positive integers. Find m + n
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I think you need to specify that f ( X ) = 1 6 X 2 − 2 X + 1 2 . Otherwise, great solution. Thanks!
X ⟹ X = ( 4 x 2 + 3 y ) ( 4 y 2 + 3 x ) + 2 5 x y = 1 6 x 2 y 2 + 1 2 x 3 + 1 2 y 3 + 9 x y + 2 5 x y = 1 6 x 2 y 2 + 1 2 ( x 3 + y 3 ) + 3 4 x y = 1 6 x 2 y 2 + 1 2 ( x + y ) ( x 2 + y 2 − x y ) + 3 4 x y = 1 6 x 2 y 2 + 1 2 ( x 3 + y 3 ) + 3 4 x y = 1 6 x 2 y 2 + 1 2 ( x + y ) ( ( x + y ) 2 − 2 x y − x y ) + 3 4 x y = 1 6 x 2 y 2 + 1 2 ( 1 − 3 x y ) + 3 4 x y = 1 6 x 2 y 2 − 2 x y + 1 2 = ( 4 x y − 4 1 ) 2 + 1 6 1 9 1
Since ( 4 x y − 4 1 ) 2 ≥ 0 , X m i n = 1 6 1 9 1 .
X is maximum when 4 x y − 4 1 is maximum. By AM-GM inequility, x + y ≥ 2 x y ⟹ 2 x y ≤ 1 ⟹ x y ≤ 4 1 . Therefore, X m a x = ( 4 × 4 1 − 4 1 ) 2 + 1 6 1 9 1 = 1 6 2 0 0 .
And that X m a x + X m i n = 1 6 3 9 1 ⟹ m + n = 4 0 7
Problem Loading...
Note Loading...
Set Loading...
Call the expression P, multiply everything out and we get P = 1 6 ( x y ) 2 + 1 2 ( x 3 + y 3 ) + 9 x y + 2 5 x y = 1 6 ( x y ) 2 + 1 2 ( x + y ) 2 − 3 6 x y + 3 4 x y ⇔ P = 1 6 ( x y ) 2 − 2 x y + 1 2 Now we let t = x y , then f ( t ) = 1 6 t 2 − 2 t + 1 2 From the condition, we can prove that t ∈ [ 0 ; 4 1 ] , we see that P = 1 6 ( t − 1 6 1 ) 2 + 1 6 1 9 1 ≥ 1 6 1 9 1 The equality holds when t = 1 6 1 which is in the range of t
Now the only thing we have to do left is compare f ( 0 ) with f ( 4 1 ) . f ( 4 1 ) is larger so P ≤ f ( 4 1 ) = 2 2 5 ∴ n m = 1 6 1 9 1 + 2 2 5 = 1 6 3 9 1 ⇒ m + n = 4 0 7 P reaches its minimum when ( x , y ) = ( 4 2 − 3 ; 4 2 + 3 ) and its permutation, reaching its maximum when x = y = 2 1