Cant solve this Limit

Calculus Level 3

lim x x 3 ( x 2 + 1 + x 4 x 2 ) = 1 A \large \lim _{ x\rightarrow \infty}{ { x }^{ 3 }\left(\sqrt { { x }^{ 2 }+\sqrt { 1+{ x }^{ 4 } } } -x\sqrt { 2 } \right) } =\frac { 1 }{ \sqrt { A } }

Find A A .


This question is part of My Mathematics Set


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 27, 2017

Relevant wiki: L'Hopital's Rule - Basic

L = lim x x 3 ( x 2 + 1 + x 4 x 2 ) = lim x x 3 ( x 1 + 1 x 4 + 1 x 2 ) = lim x x 4 ( 1 + 1 x 4 + 1 2 ) Let u = 1 x 4 = lim u 0 1 + u + 1 2 u A 0/0 cases, L’H o ˆ pital’s rule applies. = lim u 0 1 2 1 + u + 1 ( 2 u + 1 ) 1 Differentiate up and down w.r.t. u . = 1 2 1 + 0 + 1 ( 2 0 + 1 ) = 1 4 2 = 1 32 \begin{aligned} L & = \lim_{x \to \infty} x^3\left(\sqrt{x^2+\sqrt{1+x^4}} - x\sqrt 2\right) \\ & = \lim_{x \to \infty} x^3\left(x\sqrt{1+\sqrt{\frac 1{x^4}+1}} - x\sqrt 2\right) \\ & = \lim_{x \to \infty} x^4\left(\sqrt{1+\sqrt{\frac 1{x^4}+1}} - \sqrt 2\right) & \small \color{#3D99F6} \text{Let }u = \frac 1{x^4} \\ & = \lim_{u \to 0} \frac {\sqrt{1+\sqrt{u+1}} - \sqrt 2}u & \small \color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \lim_{u \to 0} \frac {\frac 1{2\sqrt{1+\sqrt{u+1}}\left(2\sqrt{u+1}\right)}}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }u. \\ & = \frac 1{2\sqrt{1+\sqrt{0+1}}\left(2\sqrt{0+1}\right)} \\ & = \frac 1{4\sqrt 2} = \frac 1{\sqrt{32}} \end{aligned}

Therefore, A = 32 A = \boxed{32} .

Hello Sir. How do I show use cancel sign as I wish to cancel 1 1 and 1 -1 ? Thank you !

Naren Bhandari - 2 years, 10 months ago

Log in to reply

\ (\require{cancel} \cancel 1 \cancel{-1} \ ) 1 1 \cancel 1 \cancel{-1}

Chew-Seong Cheong - 2 years, 10 months ago

Log in to reply

Thank you ! Sir .

Naren Bhandari - 2 years, 10 months ago
Naren Bhandari
Aug 10, 2018

L = lim x x 3 ( x 2 + 1 + x 4 x 2 ) L = \lim_{x\to \infty} x^3\left(\sqrt{x^2+\sqrt {1+x^4}} - x\sqrt 2\right) Now rationalizing the function we have L = lim x x 3 ( 1 + x 4 x 2 x 2 + 1 + x 4 + x 2 ) = lim x x 4 ( 1 + 1 x 4 1 1 + 1 + 1 x 4 + 2 ) = lim x x 4 ( 1 + 1 2 x 4 1 2 ! 2 x 8 + 1 2 + 2 ) = 1 4 2 = 1 32 A = 32 \begin{aligned} L & = \lim_{x\to \infty} x^3\left(\dfrac{ \sqrt{1 + x^4} -x^2}{{\sqrt{x^2+\sqrt {1+x^4}} + x\sqrt 2}}\right)\\ & = \lim_{x\to \infty} x^4 \left(\dfrac{ \sqrt{1 +\dfrac{1}{ x^4} }-1 }{{\sqrt{1 +\sqrt {1+\dfrac{1}{x^4}}} + \sqrt 2}}\right) \\ & = \lim_{x\to \infty} x^4 \left(\dfrac{\cancel 1 + \dfrac{1}{2x^4} - \dfrac{1}{2!\cdot 2 x^8} + \cdots \cancel{-1}}{\sqrt 2 + \sqrt 2 } \right) \\ & = \dfrac{1}{4\sqrt 2}= \dfrac{1}{\sqrt{32}} \therefore A =\boxed{32}\end{aligned}

You need only to enter \require{cancel} once in front. No need to repeat it. \require is entered to invoke a module to get the command \cancel. Always think that the creator of LaTex is smart enough to save all the unnecessary codes.

Chew-Seong Cheong - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...