Carbon fusion

In massive stars, the fusion of carbon nuclei occurs according to the reaction 6 12 C + 6 12 C 12 24 Mg + Δ E _{6}^{12}\text{C} + _{6}^{12}\text{C} \,\, \rightarrow \,\, _{12}^{24}\text{Mg} + \Delta E Estimate the energy Δ E \Delta E released in this reaction (mostly in the form of gamma radiation). Use only classical continuum mechanics and electrostatics.

Assumptions and details :

  • The nucleons in the atomic core behave like an incompressible liquid with density ρ 2 1 0 17 kg / m 3 \rho \approx 2 \cdot 10 ^{17} \, \text{kg} / \text{m} ^3 and surface tension σ 1.3 1 0 17 Nm \sigma \approx 1.3 \cdot 10 ^{17} \, \text {Nm} .

  • The atomic nuclei have the shape of a sphere and are homogeneously electrically charged.

  • The following constants may be useful:

nucleon mass m p m n 1.67 1 0 27 kg elementary charge e 1.6 1 0 19 C vacuum permittivity ε 0 8.85 1 0 12 C Vm \begin{aligned} \text{nucleon mass} & & m_p \approx m_n &\approx 1.67 \cdot 10^{-27} \,\text{kg} \\ \text{elementary charge} & & e &\approx 1.6 \cdot 10^{-19} \,\text{C} \\ \text{vacuum permittivity} & & \varepsilon_0 & \approx 8.85 \cdot 10^{-12} \,\frac{\text{C}}{\text{Vm}} \end{aligned}

Δ E 100 keV \Delta E \approx 100 \,\text{keV} Δ E 1 GeV \Delta E \approx 1 \,\text{GeV} Δ E 100 MeV \Delta E \approx 100 \,\text{MeV} Δ E 10 MeV \Delta E \approx 10 \,\text{MeV} Δ E 1 MeV \Delta E \approx 1 \,\text{MeV} Δ E 10 keV \Delta E \approx 10 \,\text{keV} Δ E 1 keV \Delta E \approx 1 \,\text{keV}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
Apr 24, 2018

First, we determine the nuclear radius R R . The nuclei are spheres with a volume V = 4 3 π R 3 V = \frac{4}{3} \pi R^3 . The mass of a nucleus M m p A M \approx m_p A is porportional to the mass number A = Z + N A = Z + N . (The mass defect of the nucleons is neglected because it accounts for less than 1% of the mass.) Since the nuclei all have the same density, it results ρ = M V = m p A 4 3 π R 3 R = [ 3 m p A 4 π ρ ] 1 / 3 R C 2.88 1 0 15 m R Mg 3.63 1 0 15 m \begin{aligned} & & \rho = \frac{M}{V} &= \frac{m_p A}{\frac{4}{3} \pi R^3 } \\ \Rightarrow & & R &= \left[\frac{3 m_p A}{4 \pi \rho }\right]^{1/3}\\ \Rightarrow & & R_\text{C} &\approx 2.88 \cdot 10^{-15} \,\text{m} \\ & & R_\text{Mg} &\approx 3.63 \cdot 10^{-15} \,\text{m} \end{aligned} Only two contributions are important for the determination of the released energy:

  • Surface energy: A nucleus with radius R R has a surface energy W surface = σ 4 π R 2 W_ \text{surface} = \sigma \cdot 4 \pi R ^2 . Since the surface ( R 2 \propto R ^2 ) grows more slowly than the volume ( R 3 \propto R ^3 ), the nucleons can minimize surface energy when two small nuclei combine to form a large nucleus.
  • Coulomb energy: A homogeneously charged sphere with radius R R and charge Q = + Z e Q = + Z e generates an electric field E = { Q r 4 π ε 0 R 3 e r r < R Q 4 π ε 0 r 3 e r r R \vec E = \begin{cases} \dfrac{Q r}{4 \pi \varepsilon_0 R^3} \vec e_r & r < R \\ \dfrac{Q}{4 \pi \varepsilon_0 r^3} \vec e_r & r \geq R \end{cases} The electrostatic field energy is given by the following volume integral: W Coulomb = ε 0 2 ( E E ) d V = ε 0 2 [ 0 R ( Q r 4 π ε 0 R 3 ) 2 4 π r 2 d r + R ( Q 4 π ε 0 r 2 ) 2 4 π r 2 d r ] = Q 2 4 π ε 0 [ 0 R r 4 R 6 d r + R 1 r 2 d r ] = Q 2 4 π ε 0 [ 1 5 R + 1 R ] = 3 Q 2 10 π ε 0 R \begin{aligned} W_\text{Coulomb} &= \frac{\varepsilon_0}{2} \int (\vec E \cdot \vec E) dV \\ &= \frac{\varepsilon_0}{2} \left[ \int_0^{R} \left(\dfrac{Q r}{4 \pi \varepsilon_0 R^3}\right)^2 4 \pi r^2 dr + \int_R^{\infty} \left(\dfrac{Q}{4 \pi \varepsilon_0 r^2}\right)^2 4 \pi r^2 dr \right] \\ &= \frac{Q^2}{4 \pi \varepsilon_0} \left[ \int_0^{R} \dfrac{r^4}{R^6} dr + \int_R^{\infty} \frac{1}{r^2} dr \right] \\ &= \frac{Q^2}{4 \pi \varepsilon_0} \left[ \frac{1}{5 R} + \frac{1}{R} \right] \\ &= \frac{3 Q^2}{10 \pi \varepsilon_0 R} \end{aligned} The energy released during fusion thus results Δ E = 2 ( W surface C + W Coulomb C ) ( W surface Mg + W Coulomb Mg ) = 4 π σ ( 2 R C 2 R Mg 2 ) + 3 e 2 10 π ε 0 ( 2 6 2 R C 1 2 2 R Mg ) 1.5 1 0 12 J 9.6 MeV \begin{aligned} \Delta E &= 2 \cdot (W_\text{surface}^\text{C} + W_\text{Coulomb}^\text{C}) - (W_\text{surface}^\text{Mg} + W_\text{Coulomb}^\text{Mg}) \\ &= 4 \pi \sigma (2 \cdot R_\text{C}^2 - R_\text{Mg}^2) + \frac{3 e^2}{10 \pi \varepsilon_0} \left(2 \frac{6^2}{R_\text{C}} - \frac{12^2}{R_\text{Mg}} \right) \\ & \approx 1.5\cdot 10^{-12} \,\text{J} \\ & \approx 9.6 \, \text{MeV} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...