A cardioid defined in the polar form is rotated about the -axis.
The volume and surface area of this object can be expressed as and , respectively, where and are positive integers.
Find the minimum value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Consider a 2d cardioid in the xz-plane rotating about the z-axis. When C describes the surface, we get in a spherical coordinate system:
(Note: r v denotes the variable from our coordinate system, not r = r ( θ ) . (We don't need r v for the surface)
\begin{gather*} r(\theta)=1-\cos(\theta)\\ \vec C=r(\theta)\begin{pmatrix} \sin(\theta)\cos(\varphi)\\\sin(\theta)\sin(\varphi)\\\cos(\theta) \end{pmatrix} \end{gather*}
Lets calculate the surface A :
d A C θ r θ P r 2 P 2 d A = ∣ C θ × C φ ∣ d θ d φ = r θ ⎝ ⎛ sin ( θ ) cos ( φ ) sin ( θ ) sin ( φ ) cos ( θ ) ⎠ ⎞ + r ⎝ ⎛ cos ( θ ) cos ( φ ) cos ( θ ) sin ( φ ) − sin ( θ ) ⎠ ⎞ , C φ = r ⎝ ⎛ − sin ( θ ) sin ( φ ) sin ( θ ) cos ( φ ) 0 ⎠ ⎞ = sin ( θ ) = C θ × C φ = r r θ ⎝ ⎛ 0 − cos ( θ ) sin ( θ ) cos ( φ ) − cos ( θ ) sin ( θ ) sin ( φ ) − 0 sin 2 ( θ ) cos 2 ( φ ) + sin 2 ( θ ) sin 2 ( φ ) ⎠ ⎞ + r 2 sin ( θ ) ⎝ ⎛ sin ( θ ) cos ( φ ) sin ( θ ) sin ( φ ) cos ( θ ) ⎠ ⎞ = r ⎝ ⎛ sin ( θ ) c o s ( φ ) ( − sin ( θ ) cos ( θ ) + sin ( θ ) − cos ( θ ) sin ( θ ) ) sin ( θ ) sin ( φ ) ( − sin ( θ ) cos ( θ ) + sin ( θ ) − cos ( θ ) sin ( θ ) ) sin 3 ( θ ) + sin ( θ ) cos ( θ ) − sin ( θ ) cos 2 ( θ ) ⎠ ⎞ = ( − 2 sin ( θ ) cos ( θ ) + sin ( θ ) ) 2 sin 2 ( θ ) + sin 2 ( θ ) ( sin 2 ( θ ) + cos ( θ ) − cos 2 ( θ ) ) 2 = sin 2 ( θ ) [ 4 sin 2 ( θ ) cos 2 ( θ ) + sin 2 ( θ ) − 4 sin 2 ( θ ) cos ( θ ) + sin 4 ( θ ) + cos 2 ( θ ) + 2 sin 2 ( θ ) cos ( θ ) + cos 4 ( θ ) − 2 sin 2 ( θ ) cos 2 ( θ ) − 2 cos 3 ( θ ) ] = sin 2 ( θ ) [ 2 sin 2 ( θ ) cos 2 ( θ ) + sin 2 ( θ ) − 2 sin 2 ( θ ) cos ( θ ) + sin 4 ( θ ) + cos 2 ( θ ) + cos 4 ( θ ) − 2 cos 3 ( θ ) ] = sin 2 ( θ ) [ 1 2 + 1 − 2 sin 2 ( θ ) cos ( θ ) − 2 cos 3 ( θ ) ] = 2 sin 2 ( θ ) [ 1 − cos ( θ ) ] = 4 sin 2 ( θ ) sin 2 ( 2 θ ) = ∣ P ∣ d θ d φ = 2 ( sin ( θ ) sin ( 2 θ ) − cos ( θ ) sin ( θ ) sin ( 2 θ ) ) d θ d φ
\begin{gather*} \int\sin(x)\sin(x/2)\mathrm dx=\frac 43\sin^3(x/2)\\ \int\cos(x)\sin(x)\sin(x/2)\mathrm dx=\frac 4{15}\sin^3(x/2)\left(3\cos(x)+2\right)\\ \Rightarrow A=2\pi\int_0^\pi|P|\mathrm d\theta=4\pi\left[\frac 43-\frac 4{15}(-3+2)\right]=\pi\frac{2^5}{5} \end{gather*}
Lets calculate the volume V too:
Note: r v denotes a variable from our spherical coordinate system, and r = r ( θ ) denotes the bound of integration.
d V V r 3 ( θ ) V = r v 2 sin ( θ ) d r v d θ d φ = 0 ∫ π 0 ∫ r ( θ ) 0 ∫ 2 π r v 2 sin ( θ ) d φ d r v d θ = 3 2 π 0 ∫ π r 3 ( θ ) sin ( θ ) d θ = 8 sin 6 ( 2 θ ) = 4 1 ( 1 0 − 1 5 cos ( θ ) + 6 cos ( 2 θ ) − cos ( 3 θ ) ) = 6 π 0 ∫ π ( 1 0 sin ( θ ) − 1 5 cos ( θ ) sin ( θ ) + 6 cos ( 2 θ ) sin ( θ ) − cos ( 3 θ ) sin ( θ ) ) d θ
\begin{gather*} \int\cos(x)\sin(x)\mathrm dx=-\frac 12\cos^2(x)\\ \int\cos(2x)\sin(x)\mathrm dx=\frac 1{6}\left(3\cos(x)-\cos(3x)\right)\\ \int\cos(3x)\sin(x)\mathrm dx=\frac 1{8}\left(4\cos^2(x)-\cos(4x)\right)\\ \Rightarrow V=\frac{\pi}{6}\left[-10\cdot(-2)-15\cdot(0)+(-2-2)-\frac 18\cdot(0)\right]=\pi\frac{2^3}{3} \end{gather*}
So: A + B = 8