Cardioid

Calculus Level 4

A cardioid defined in the polar form r = 1 sin θ r = 1 - \sin\theta is rotated about the y y -axis.

The volume and surface area of this object can be expressed as π × 2 A A \pi \times \dfrac{2^A}A and π × 2 B B \pi \times \dfrac{2^B}B , respectively, where A A and B B are positive integers.

Find the minimum value of A + B A+B .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider a 2d cardioid in the xz-plane rotating about the z-axis. When C \vec C describes the surface, we get in a spherical coordinate system:

(Note: r v r_{\mathrm v} denotes the variable from our coordinate system, not r = r ( θ ) r=r(\theta) . (We don't need r v r_{\mathrm v} for the surface)

\begin{gather*} r(\theta)=1-\cos(\theta)\\ \vec C=r(\theta)\begin{pmatrix} \sin(\theta)\cos(\varphi)\\\sin(\theta)\sin(\varphi)\\\cos(\theta) \end{pmatrix} \end{gather*}

Lets calculate the surface A A :

d A = C θ × C φ d θ d φ C θ = r θ ( sin ( θ ) cos ( φ ) sin ( θ ) sin ( φ ) cos ( θ ) ) + r ( cos ( θ ) cos ( φ ) cos ( θ ) sin ( φ ) sin ( θ ) ) , C φ = r ( sin ( θ ) sin ( φ ) sin ( θ ) cos ( φ ) 0 ) r θ = sin ( θ ) P = C θ × C φ = r r θ ( 0 cos ( θ ) sin ( θ ) cos ( φ ) cos ( θ ) sin ( θ ) sin ( φ ) 0 sin 2 ( θ ) cos 2 ( φ ) + sin 2 ( θ ) sin 2 ( φ ) ) + r 2 sin ( θ ) ( sin ( θ ) cos ( φ ) sin ( θ ) sin ( φ ) cos ( θ ) ) = r ( sin ( θ ) c o s ( φ ) ( sin ( θ ) cos ( θ ) + sin ( θ ) cos ( θ ) sin ( θ ) ) sin ( θ ) sin ( φ ) ( sin ( θ ) cos ( θ ) + sin ( θ ) cos ( θ ) sin ( θ ) ) sin 3 ( θ ) + sin ( θ ) cos ( θ ) sin ( θ ) cos 2 ( θ ) ) P 2 r 2 = ( 2 sin ( θ ) cos ( θ ) + sin ( θ ) ) 2 sin 2 ( θ ) + sin 2 ( θ ) ( sin 2 ( θ ) + cos ( θ ) cos 2 ( θ ) ) 2 = sin 2 ( θ ) [ 4 sin 2 ( θ ) cos 2 ( θ ) + sin 2 ( θ ) 4 sin 2 ( θ ) cos ( θ ) + sin 4 ( θ ) + cos 2 ( θ ) + 2 sin 2 ( θ ) cos ( θ ) + cos 4 ( θ ) 2 sin 2 ( θ ) cos 2 ( θ ) 2 cos 3 ( θ ) ] = sin 2 ( θ ) [ 2 sin 2 ( θ ) cos 2 ( θ ) + sin 2 ( θ ) 2 sin 2 ( θ ) cos ( θ ) + sin 4 ( θ ) + cos 2 ( θ ) + cos 4 ( θ ) 2 cos 3 ( θ ) ] = sin 2 ( θ ) [ 1 2 + 1 2 sin 2 ( θ ) cos ( θ ) 2 cos 3 ( θ ) ] = 2 sin 2 ( θ ) [ 1 cos ( θ ) ] = 4 sin 2 ( θ ) sin 2 ( θ 2 ) d A = P d θ d φ = 2 ( sin ( θ ) sin ( θ 2 ) cos ( θ ) sin ( θ ) sin ( θ 2 ) ) d θ d φ \begin{aligned} \mathrm dA&=|C_{\theta}\times C_{\varphi}|\mathrm d\theta\mathrm d\varphi\\ \vec C_{\theta}&=r_{\theta}\begin{pmatrix} \sin(\theta)\cos(\varphi)\\\sin(\theta)\sin(\varphi)\\\cos(\theta) \end{pmatrix}+r\begin{pmatrix} \cos(\theta)\cos(\varphi)\\\cos(\theta)\sin(\varphi)\\-\sin(\theta) \end{pmatrix}~~,~~ C_{\varphi}=r\begin{pmatrix} -\sin(\theta)\sin(\varphi)\\\sin(\theta)\cos(\varphi)\\0 \end{pmatrix}\\ r_\theta&=\sin(\theta)\\ P&=C_{\theta}\times C_{\varphi}=rr_\theta\begin{pmatrix} 0-\cos(\theta)\sin(\theta)\cos(\varphi)\\-\cos(\theta)\sin(\theta)\sin(\varphi)-0\\\sin^2(\theta)\cos^2(\varphi)+\sin^2(\theta)\sin^2(\varphi) \end{pmatrix}+r^2\sin(\theta)\begin{pmatrix} \sin(\theta)\cos(\varphi)\\\sin(\theta)\sin(\varphi)\\\cos(\theta) \end{pmatrix}\\ &=r\begin{pmatrix} \sin(\theta)cos(\varphi)\left(-\sin(\theta)\cos(\theta)+\sin(\theta)-\cos(\theta)\sin(\theta)\right)\\ \sin(\theta)\sin(\varphi)\left(-\sin(\theta)\cos(\theta)+\sin(\theta)-\cos(\theta)\sin(\theta)\right)\\ \sin^3(\theta)+\sin(\theta)\cos(\theta)-\sin(\theta)\cos^2(\theta) \end{pmatrix}\\ \frac{P^2}{r^2}&=\left(-2\sin(\theta)\cos(\theta)+\sin(\theta)\right)^2\sin^2(\theta)+\sin^2(\theta)\left(\sin^2(\theta)+\cos(\theta)-\cos^2(\theta)\right)^2\\ &=\sin^2(\theta)\left[4\sin^2(\theta)\cos^2(\theta)+\sin^2(\theta)-4\sin^2(\theta)\cos(\theta)+\sin^4(\theta)+\cos^2(\theta)\right.\\ &~~~~~~~~~\left.~~~~~~+2\sin^2(\theta)\cos(\theta)+\cos^4(\theta)-2\sin^2(\theta)\cos^2(\theta)-2\cos^3(\theta)\right]\\ &=\sin^2(\theta)\left[2\sin^2(\theta)\cos^2(\theta)+\sin^2(\theta)-2\sin^2(\theta)\cos(\theta)+\sin^4(\theta)+\cos^2(\theta)\right.\\ &~~~~~~~~~\left.~~~~~~+\cos^4(\theta)-2\cos^3(\theta)\right]\\ &=\sin^2(\theta)\left[1^2+1-2\sin^2(\theta)\cos(\theta)-2\cos^3(\theta)\right]\\ &=2\sin^2(\theta)\left[1-\cos(\theta)\right]=4\sin^2(\theta)\sin^2\left(\frac{\theta}{2}\right)\\ \mathrm dA&=|P|\mathrm d\theta\mathrm d\varphi=2\left(\sin(\theta)\sin\left(\frac{\theta}{2}\right)-\cos(\theta)\sin(\theta)\sin\left(\frac{\theta}{2}\right)\right)\mathrm d\theta\mathrm d\varphi \end{aligned}

\begin{gather*} \int\sin(x)\sin(x/2)\mathrm dx=\frac 43\sin^3(x/2)\\ \int\cos(x)\sin(x)\sin(x/2)\mathrm dx=\frac 4{15}\sin^3(x/2)\left(3\cos(x)+2\right)\\ \Rightarrow A=2\pi\int_0^\pi|P|\mathrm d\theta=4\pi\left[\frac 43-\frac 4{15}(-3+2)\right]=\pi\frac{2^5}{5} \end{gather*}

\\

Lets calculate the volume V V too:

Note: r v r_{\mathrm v} denotes a variable from our spherical coordinate system, and r = r ( θ ) r=r(\theta) denotes the bound of integration.

d V = r v 2 sin ( θ ) d r v d θ d φ V = 0 π 0 r ( θ ) 0 2 π r v 2 sin ( θ ) d φ d r v d θ = 2 π 3 0 π r 3 ( θ ) sin ( θ ) d θ r 3 ( θ ) = 8 sin 6 ( θ 2 ) = 1 4 ( 10 15 cos ( θ ) + 6 cos ( 2 θ ) cos ( 3 θ ) ) V = π 6 0 π ( 10 sin ( θ ) 15 cos ( θ ) sin ( θ ) + 6 cos ( 2 θ ) sin ( θ ) cos ( 3 θ ) sin ( θ ) ) d θ \begin{aligned} \mathrm dV&=r_{\mathrm v}^2\sin(\theta)\mathrm dr_v\mathrm d\theta\mathrm d\varphi\\ V&=\int\limits_0^\pi\int\limits_0^{r(\theta)}\int\limits_0^{2\pi}r_{\mathrm v}^2\sin(\theta)\mathrm d\varphi\mathrm dr_{\mathrm v}\mathrm d\theta=\frac{2\pi}{3}\int\limits_0^\pi r^3(\theta)\sin(\theta)\mathrm d\theta\\ r^3(\theta)&=8\sin^6\left(\frac{\theta}{2}\right)=\frac{1}{4}\left(10-15\cos(\theta)+6\cos(2\theta)-\cos(3\theta)\right)\\ V&=\frac{\pi}{6}\int\limits_0^\pi \left(10\sin(\theta)-15\cos(\theta)\sin(\theta)+6\cos(2\theta)\sin(\theta)-\cos(3\theta)\sin(\theta)\right)\mathrm d\theta \end{aligned}

\begin{gather*} \int\cos(x)\sin(x)\mathrm dx=-\frac 12\cos^2(x)\\ \int\cos(2x)\sin(x)\mathrm dx=\frac 1{6}\left(3\cos(x)-\cos(3x)\right)\\ \int\cos(3x)\sin(x)\mathrm dx=\frac 1{8}\left(4\cos^2(x)-\cos(4x)\right)\\ \Rightarrow V=\frac{\pi}{6}\left[-10\cdot(-2)-15\cdot(0)+(-2-2)-\frac 18\cdot(0)\right]=\pi\frac{2^3}{3} \end{gather*}

So: A + B = 8 A+B=\boxed{8}

Elegant expositive approach to the solution to this problem!

W Rose - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...