Carelessly Cake

John Cake is a very indeed seriously careless person.

One day, he came up with five numbers: x 2 + 1 x^2+1 x 2 1 x^2-1 2 x 2x x 2 + 2 x x^2+2x 3 x 5 3x-5

( x x is an integer)

He chose 4 of them, and wanted to take the sum of the 4 numbers chosen, but instead, he carelessly added one of the chosen 4 numbers twice, getting 47 as the wrong sum.

If the correct sum is S S , what is the sum of all possible values of S S ?


This is one part of 1+1 is not = to 3 .


The answer is 108.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenneth Tan
Aug 31, 2014

Denote A = x 2 + 1 A=x^2+1 , B = x 2 1 B=x^2-1 , C = 2 x C=2x , D = x 2 + 2 x D=x^2+2x , E = 3 x 5 E=3x-5 .

Suppose the missing number (or the not chosen number) is S M S_M , the extra number (the number that was added twice) is S X S_X .

Then, A + B + C + D + E = 3 x 2 + 7 x 5 = 47 + S M S X A+B+C+D+E=3x^2+7x-5=47+S_M-S_X , S = 47 S X S=47-S_X .

Define n = S M S X n=S_M-S_X , then n = 3 x 2 + 7 x 52 n=3x^2+7x-52 , thus we know that n n must be even.

Now study the table below: When x is odd When x is even A even odd B even odd C even even D odd even E even odd \begin{array}{|c|c|c|} \hline \\ & \text{When } x \text{ is odd} & \text{When } x \text{ is even}\\ \hline A & \text{even} & \text{odd} \\ \hline B & \text{even} & \text{odd} \\ \hline C & \text{even} & \text{even} \\ \hline D & \text{odd} & \text{even} \\ \hline E & \text{even} & \text{odd} \\ \hline \end{array}

Pretty cool.

Consider all the possible values of n n , there are only 14 possible values for n n : ± ( A B ) , ± ( A C ) , ± ( A E ) , ± ( B C ) , \pm (A-B),\quad\pm (A-C),\quad\pm (A-E),\quad\pm (B-C), ± ( B E ) , ± ( C D ) , ± ( C E ) \pm (B-E),\quad\pm (C-D),\quad\pm (C-E) [ n n cannot be ± ( A D ) \pm (A-D) , ± ( B D ) \pm (B-D) and ± ( D E ) \pm (D-E) because that will definitely make n n odd]

Let n = a x 2 + b x + c n=ax^2+bx+c , then 3 x 2 + 7 x 52 n = ( 3 a ) x 2 + ( 7 b ) x ( 52 + c ) = 0 3x^2+7x-52-n=(3-a)x^2+(7-b)x-(52+c)=0 , consider all the possible ordered triples ( a , b , c ) (a,b,c) : n a b c a + b + c a b + c A B 0 0 2 2 2 B A 0 0 2 2 2 A C 1 2 1 0 4 C A 1 2 1 0 4 A E 1 3 6 4 10 E A 1 3 6 4 10 B C 1 2 1 2 2 C B 1 2 1 2 2 B E 1 3 4 2 8 E B 1 3 4 2 8 C D 1 0 0 1 1 D C 1 0 0 1 1 C E 0 1 5 4 6 E C 0 1 5 4 6 \begin{array}{|c|c|c|c|c|c|} \hline \\ n & a & b & c & a+b+c & a-b+c\\ \hline A-B & 0 & 0 & 2 & 2 & 2 \\B-A & 0 & 0 &-2 & -2 & -2\\ \hline A-C & 1 & -2 & 1 & 0 & 4\\C-A & -1 & 2 & -1 & 0 & -4\\ \hline A-E & 1 & -3 & 6 & 4 & 10\\E-A & -1 & 3 & -6 & -4 & -10\\ \hline B-C & 1 & -2 & -1 & -2 & 2\\C-B & -1 & 2 & 1 & 2 & -2\\ \hline B-E & 1 & -3 & 4 & 2 & 8 \\E-B & -1 & 3 & -4 & -2 & -8\\ \hline C-D & -1 & 0 & 0 & -1 & -1\\D-C & 1 & 0 & 0 & 1 & 1\\ \hline C-E & 0 & -1 & 5 & 4 & 6\\E-C & 0 & 1 & -5 & -4 & -6\\ \hline \end{array} Wow!

See that 1 a 1 -1\leqslant a\leqslant1 , 3 b 3 -3\leqslant b\leqslant3 , 6 c 6 -6\leqslant c\leqslant6 .

From ( 3 a ) x 2 + ( 7 b ) x ( 52 + c ) = 0 (3-a)x^2+(7-b)x-(52+c)=0 , we get 6 c = ( 3 a ) x 2 + ( 7 b ) x 52 6 46 ( 3 a ) x 2 + ( 7 b ) x 58 -6\leqslant c=(3-a)x^2+(7-b)x-52\leqslant6 \\ 46\leqslant (3-a)x^2+(7-b)x\leqslant58

Its easy to figure out that x 0 x\neq0 , now let's split it into 2 cases:

Case 1: x > 0 x>0

If x > 0 x>0 , then 46 ( 3 a ) x 2 + ( 7 b ) x < 4 x 2 + 10 x x ( 2 x + 5 ) > 23 x 3 46\leqslant (3-a)x^2+(7-b)x<4x^2+10x \\ x(2x+5)>23 \\ \therefore x\geqslant3 58 ( 3 a ) x 2 + ( 7 b ) x > 2 x 2 + 4 x x ( x + 2 ) < 29 x 4 58\geqslant (3-a)x^2+(7-b)x>2x^2+4x \\ x(x+2)<29 \\ \therefore x\leqslant4 3 x 4 \therefore 3\leqslant x\leqslant4

When x = 3 x=3 , c = 9 ( a 3 ) + 3 ( b 7 ) + 52 = 9 a + 3 b + 4 a b ( m o d 4 ) a b + c 0 ( m o d 4 ) ( 1 ) \begin{aligned}-c&=9(a-3)+3(b-7)+52\\&=9a+3b+4\\&\equiv a-b\pmod{4}\end{aligned} \\ \therefore a-b+c\equiv0\pmod{4}\qquad(1) Meanwhile, c 1 ( m o d 3 ) ( 2 ) c\equiv-1\pmod{3}\qquad(2) As we can see from the table above, when x = 3 x=3 , n n satisfies ( 1 ) (1) and ( 2 ) (2) if n = C A n=C-A or n = E B n=E-B . In either case, they both satisfy c = 9 a + 3 b + 4 -c=9a+3b+4 .

n = C A , E B \therefore n=C-A,\,E-B S X = A , B = x 2 + 1 , x 2 1 = 10 , 8 \begin{aligned}\therefore S_X&=A,B\\&=x^2+1,\,x^2-1\\&=10,\,8\end{aligned} S = 47 S X = 37 , 39 \begin{aligned}S&=47-S_X\\&=37,\,39\end{aligned}

When x = 4 x=4 , c = 16 ( a 3 ) + 4 ( b 7 ) + 52 = 16 a + 4 b 24 a + b ( m o d 3 ) a + b + c 0 ( m o d 3 ) ( 3 ) \begin{aligned}-c&=16(a-3)+4(b-7)+52\\&=16a+4b-24\\&\equiv a+b\pmod{3}\end{aligned} \\ \therefore a+b+c\equiv0\pmod{3}\qquad(3) Meanwhile, c 0 ( m o d 4 ) ( 4 ) c\equiv0\pmod{4}\qquad(4) However, when x = 4 x=4 , from the table above, there's no such n n that satisfy both ( 3 ) (3) and ( 4 ) (4) .

Case 2: x < 0 x<0

If x < 0 x<0 , then 46 ( 3 a ) x 2 + ( 7 b ) x < 4 x 2 + 4 x 2 x ( x + 1 ) 23 x 4 46\leqslant (3-a)x^2+(7-b)x<4x^2+4x \\ 2x(x+1)\geqslant23 \\ \therefore x\leqslant -4 58 ( 3 a ) x 2 + ( 7 b ) x 2 x 2 + 10 x x ( x + 5 ) 29 x 8 58\geqslant (3-a)x^2+(7-b)x\geqslant2x^2+10x \\ x(x+5)\leqslant29 \\ \therefore x\geqslant -8 8 x 4 \therefore -8\leqslant x\leqslant-4

When x = 8 x=-8 , c = 64 ( a 3 ) 8 ( b 7 ) + 52 a 3 b + 7 + 3 a b ( m o d 7 ) a b + c 0 ( m o d 7 ) ( 5 ) \begin{aligned}-c&=64(a-3)-8(b-7)+52\\&\equiv a-3-b+7+3 \\&\equiv a-b\pmod{7}\end{aligned} \\ \therefore a-b+c\equiv0\pmod{7}\qquad(5) Obviously no such n n satisfies ( 5 ) (5) when x = 8 x=-8 .

When x = 7 x=-7 , c = 49 ( a 3 ) 7 ( b 7 ) + 52 a 3 + b 7 + 4 a + b + 2 ( m o d 8 ) a + b + c 6 ( m o d 8 ) ( 6 ) \begin{aligned}-c&=49(a-3)-7(b-7)+52\\&\equiv a-3+b-7+4 \\&\equiv a+b+2\pmod{8}\end{aligned} \\ \therefore a+b+c\equiv6\pmod{8}\qquad(6) c 3 ( m o d 7 ) ( 7 ) c\equiv3\pmod{7}\qquad(7) No such n n satisfies both ( 6 ) (6) and ( 7 ) (7) when x = 7 x=-7 .

When x = 6 x=-6 , c = 36 ( a 3 ) 6 ( b 7 ) + 52 a 3 + b 7 + 3 a + b ( m o d 7 ) a + b + c 6 ( m o d 8 ) ( 8 ) \begin{aligned}-c&=36(a-3)-6(b-7)+52\\&\equiv a-3+b-7+3 \\&\equiv a+b\pmod{7}\end{aligned} \\ \therefore a+b+c\equiv6\pmod{8}\qquad(8) c 3 ( m o d 7 ) ( 9 ) c\equiv3\pmod{7}\qquad(9) No such n n satisfies both ( 8 ) (8) and ( 9 ) (9) when x = 6 x=-6 .

When x = 5 x=-5 , c = 25 ( a 3 ) 5 ( b 7 ) + 52 a 3 b + 7 a b ( m o d 4 ) a b + c 0 ( m o d 4 ) ( 10 ) \begin{aligned}-c&=25(a-3)-5(b-7)+52\\&\equiv a-3-b+7 \\&\equiv a-b\pmod{4}\end{aligned} \\ \therefore a-b+c\equiv0\pmod{4}\qquad(10) c 2 ( m o d 5 ) ( 11 ) c\equiv2\pmod{5}\qquad(11) No such n n satisfies both ( 10 ) (10) and ( 11 ) (11) when x = 5 x=-5 .

When x = 4 x=-4 , c = 16 ( a 3 ) 4 ( b 7 ) + 52 = 16 a 4 b + 32 a 3 b + 7 a b ( m o d 4 ) a b + c 0 ( m o d 4 ) ( 12 ) \begin{aligned}-c&=16(a-3)-4(b-7)+52\\&=16a-4b+32\\&\equiv a-3-b+7 \\&\equiv a-b\pmod{4}\end{aligned} \\ \therefore a-b+c\equiv0\pmod{4}\qquad(12) a + b + c 3 ( m o d 5 ) ( 13 ) a+b+c\equiv3\pmod{5}\qquad(13) When x = 4 x=-4 , if n = E B n=E-B , a = 1 a=-1 , b = 3 b=3 , c = 4 c=-4 satisfies c = 16 a 4 b + 32 -c=16a-4b+32 , ( 12 ) (12) and ( 13 ) (13) . n = E B \therefore n=E-B S X = B = x 2 1 = 15 \begin{aligned}\therefore S_X&=B\\&=x^2-1\\&=15\end{aligned} S = 47 S X = 32 \begin{aligned}S&=47-S_X\\&=32\end{aligned}

Therefore, the sum of all possible values of S S is 39 + 37 + 32 = 108 39+37+32=108 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...