Cartesian plane challenge 2

Geometry Level 5

In A B C \triangle ABC , let ( A H ) : x + y 6 = 0 (AH):x+y-6=0 be the perpendicular ( H B C H\in BC ), ( B E ) : x 2 y + 1 = 0 (BE): x-2y+1=0 and ( C K ) : x 1 = 0 (CK): x-1=0 are the medians ( E A C ; K A B E\in AC; K\in AB ). Find the coordinates of vertices A , B A,B and C C . Submit your answer as their sum (to 2 decimal places).

Clarification

  • The sum is x A + y A + x B + y B + x C + y C x_A+y_A+x_B+y_B+x_C+y_C


The answer is 6.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Yashas Ravi
May 18, 2020

The coordinates of the centroid are (xA+xB+xC/3 , yA+yB+yC/3). The coordinates of the centroid is the intersection of CK and BE which is (1,1), so xA+xB+xC+yA+yB+yC=3+3 = 6 which is the final answer.

Tom Engelsman
Oct 18, 2018

Let the coordinates of triangle A B C ABC be modeled per the following:

A ( x A , 6 x A ) ; B ( x B , x B + 1 2 ) ; C ( 1 , y C ) A(x_{A}, 6 - x_{A}); B(x_{B}, \frac{x_{B}+1}{2}); C(1,y_{C}) (i)

If C K CK be the median of A B AB , then we require: x A + x B 2 = 1 \frac{x_{A} + x_{B}}{2} = 1 (ii). If A H AH be the perpendicular altitude to B C BC , then we require the slope to equal m B C = 1 m_{BC} = 1 . This translates into:

y C y B x C x B = y C x B + 1 2 1 x B = 1 x B + 2 y C = 3 \frac{y_{C} - y_{B}}{x_{C}-x_{B}} = \frac{y_{C} - \frac{x_{B}+1}{2}}{1 - x_{B}} = 1 \Rightarrow x_{B} + 2y_{C} = 3 (iii).

If E E is the midpoint of A C AC and is also contained on the median modeled by the line y = x + 1 2 y = \frac{x+1}{2} , then we require:

y [ ( 6 x A ) + y C 2 ] = 1 2 ( x x A + 1 2 ) y = 1 2 x + [ ( 6 x A ) + y C 2 x A + 1 4 ] y - [\frac{(6-x_{A}) + y_{C}}{2}] = \frac{1}{2} \cdot (x - \frac{x_{A}+1}{2}) \Rightarrow y = \frac{1}{2}x + [\frac{(6-x_{A}) + y_{C}}{2} - \frac{x_{A}+1}{4}] ;

or ( 6 x A ) + y C 2 x A + 1 4 = 1 2 3 x A + 2 y C = 9 \frac{(6-x_{A}) + y_{C}}{2} - \frac{x_{A}+1}{4} = \frac{1}{2} \Rightarrow -3x_{A} + 2y_{C} = -9 (iv).

Let us now take the equations from (ii), (iii), and (iv) and solve for x A , x B , y C x_{A}, x_{B}, y_{C} via a 3x3 matrix:

[ 1 1 0 0 1 2 3 0 2 ] [ x A x B y C ] = [ 2 3 9 ] \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ -3 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_{A} \\ x_{B} \\y_{C} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -9 \end{bmatrix} (v)

which solving for (v) gives [ x A x B y C ] = [ 5 3 3 ] \begin{bmatrix} x_{A}\\x_{B}\\y_{C} \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\3 \end{bmatrix}

and the coordinates A ( 5 , 1 ) ; B ( 3 , 1 ) ; C ( 1 , 3 ) A(5,1); B(-3,-1); C(1,3) . Thus the required coordinate sum computes to 6 . \boxed{6}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...