Catch me if you can!

Calculus Level 4

0 π e cos θ cos ( sin θ ) d θ \large \int_0^\pi e^{\cos \theta} \cos (\sin \theta) d \theta

The above definite integral evaluates to a number of the form a π b + k a \pi^b + k where a a , b b and k k are integers. Find the sum of the digits of the number ( a + b + k ) 12 (a + b + k)^{12} .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Avinash Pandey
Aug 2, 2014

We make use of complex numbers.

We know that

e i sin θ = cos ( sin θ ) + i sin ( sin θ ) e^{i \sin \theta } = \cos(\sin \theta) + i \sin ( \sin \theta)

e cos θ e i sin θ = e cos θ cos ( sin θ ) + i e cos θ sin ( sin θ ) \implies e^{\cos \theta} e^{i \sin \theta } = e^{\cos \theta} \cos(\sin \theta) + ie^{\cos \theta} \sin ( \sin \theta)

e cos θ + i sin θ = e cos θ cos ( sin θ ) + i e cos θ sin ( sin θ ) \implies e^{\cos \theta + i \sin \theta } = e^{\cos \theta} \cos(\sin \theta) + ie^{\cos \theta} \sin ( \sin \theta)

Now, our integrand is the real part of e cos θ + i sin θ e^{\cos \theta + i \sin \theta } .

So our definite integral is nothing but

0 π R e ( e cos θ + i sin θ ) d θ \int\limits_0^\pi Re (e^{\cos \theta + i \sin \theta }) d \theta

= 0 π R e ( 1 + ( cos θ + i sin θ ) + ( cos θ + i sin θ ) 2 2 + ) d θ = \int\limits_0^\pi Re( 1 + (\cos \theta + i \sin \theta) + \frac{(\cos \theta + i \sin \theta)^2}{2} + \cdot \cdot \cdot ) d \theta

= 0 π R e ( 1 + ( cos θ + i sin θ ) + cos 2 θ + i sin 2 θ 2 + ) d θ = \int\limits_0^\pi Re( 1 + (\cos \theta + i \sin \theta) + \frac{\cos 2 \theta + i \sin 2 \theta}{2} + \cdot \cdot \cdot ) d \theta

= 0 π ( 1 + cos θ + cos 2 θ 2 + ) d θ = \int\limits_0^\pi ( 1 + \cos \theta + \frac{\cos 2 \theta }{2} + \cdot \cdot \cdot ) d \theta

Since 0 π cos n θ d θ = 0 \int\limits_0^\pi \cos n \theta d \theta = 0 , where n is an integer, the value of our integral is nothing but π \pi .

So a = b = 1 a=b=1 and k = 0 k=0 . Then, ( a + b + k ) 12 = 2 12 = 4096 (a + b + k)^{12} = 2^{12} = 4096 . Therefore, the sum of digits is 19 19 .

Simple and elegant..

Nishant Sharma - 6 years, 8 months ago

Log in to reply

thanks for this beautiful problem

Gaurav Jain - 6 years, 7 months ago

beautiful solution.....

Vighnesh Raut - 6 years, 4 months ago

Oh! Nice solution! I did it using differentiation under integral sign.

Kartik Sharma - 6 years, 1 month ago

It was originally posted by me

Shishir G. - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...