Cauchy-Schwarz inequality with roots

Algebra Level 4

If positive numbers x x , y y , and z z satisfy x + y + z = 75 x+y+z=75 , what is the maximum value of

x + 5 y + 7 z ? \sqrt{x}+5\sqrt{y}+7\sqrt{z}\ ?


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brilliant Mathematics Staff
Aug 1, 2020

Since x > 0 x>0 , y > 0 y>0 and z > 0 z>0 , by the Cauchy-Schwarz inequality , we have

( 1 2 + 5 2 + 7 2 ) ( x + y + z ) ( x + 5 y + 7 z ) 2 7 5 2 ( x + 5 y + 7 z ) 2 0 < x + 5 y + 7 z 75 , \begin{aligned} (1^2+5 ^2+7 ^2)(x+y+z) & \geq \left(\sqrt{x}+5\sqrt{y}+7\sqrt{z}\right)^2 \\ 75 ^2 & \geq \left(\sqrt{x}+5\sqrt{y}+7\sqrt{z}\right)^2 \\ 0 < \sqrt{x}+5\sqrt{y}+7\sqrt{z} & \leq 75, \end{aligned} where equality holds for x = y 5 = z 7 . x=\frac{y}{5}=\frac{z}{7}.

Therefore, the maximum value of x + 5 y + 7 z \sqrt{x}+5\sqrt{y}+7\sqrt{z} is 75 75 .

[[wiki-Cauchy

This was a nice one! :) Can you link the Wiki?

Mahdi Raza - 10 months, 1 week ago

Log in to reply

Done! \quad

Brilliant Mathematics Staff - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...