Cauchy-Schwarz is pretty helpful

Algebra Level 2

Let a a , b b , c c and d d be positive reals such that a + b + c + d = 1 a + b + c + d = 1 . Find the minimum value of 1 a + 1 b + 1 c + 1 d \frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d} .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Jaiveer Shekhawat
Dec 24, 2014

Yeah bro you did the best one

Prakhar Srivastav - 6 years, 5 months ago

Great use of Cauchy–Bunyakovsky–Schwarz inequality....

Anubhav Mahapatra - 3 years, 8 months ago

Reached The same solution after a few days of thinking about this! So rewarding when I finally got it :)

Jonathan TheGreat - 2 years, 3 months ago
Dinesh Chavan
Jul 4, 2014

The problem is a very easy application of AM-HM. We know that for the fout positive real numbers a , b , c , d a,b,c,d , By AM-HM

a + b + c + d 4 4 1 a + 1 b + 1 c + 1 d \frac{a+b+c+d}{4} \geq \frac{4}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} .

This this is very simple that ( 1 a + 1 b + 1 c + 1 d ) ( a + b + c + d ) 16 (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})(a+b+c+d)≥16

But since, a + b + c + d = 1 a+b+c+d=1 , we get ( 1 a + 1 b + 1 c + 1 d ) 16 (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})≥16 Therefore, the minimum value is 16

Easy one!!

sara sharma - 6 years, 11 months ago

Log in to reply

Ya it was a real easy one :)

kritarth lohomi - 6 years, 4 months ago

Hi is there an easy way to do this problem?

Neil Shah - 6 years, 2 months ago

Applying AM-HM is much easier than Cauchy-Schwarz and convenient in this case.......

Anubhav Mahapatra - 3 years, 8 months ago

Yeah there is no need of Cauchy Schwartz

Nice method

Sabyasachi . . - 11 months ago

I have the same solution

Aleksandra Strzelecka - 4 months, 1 week ago

WHERE'S THE EQUALITY CASE???????????????????????????????????????????????????????????????

Cody Johnson - 6 years, 11 months ago

Log in to reply

When a = b = c = d = 1 4 a=b=c=d=\frac{1}{4}

Dinesh Chavan - 6 years, 11 months ago
Mathh Mathh
Jul 4, 2014

1 a + 1 b + 1 c + 1 d = ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) Cauchy-Schwarz ( 1 + 1 + 1 + 1 ) 2 = 16 \displaystyle\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\\\stackrel{\text{Cauchy-Schwarz}}\ge (1+1+1+1)^2=16 .

Since 16 16 can be reached when a 1 a = b 1 b = c 1 c = d 1 d a 2 = b 2 = c 2 = d 2 a , b , c , d > 0 a = b = c = d = 1 4 , \displaystyle\cfrac{a}{\cfrac{1}{a}}=\cfrac{b}{\cfrac{1}{b}}=\cfrac{c}{\cfrac{1}{c}}=\cfrac{d}{\cfrac{1}{d}}\implies a^2=b^2=c^2=d^2\stackrel{a,b,c,d>0}{\implies} a=b=c=d=\frac{1}{4}\text{,} the answer is 16 \boxed{16} .

Angelo Yatszumii
Dec 28, 2014

If a + b + c + d = 1 a + b + c + d = 1 , then 1 a + 1 b + 1 c + 1 d = 1 ( 1 a + 1 b + 1 c + 1 d ) = \frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d} = 1 * (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d} ) = ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) (a + b + c + d) * (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d}) But 1 a + 1 b + 1 c + 1 d = ( 1 a ) 2 + ( 1 b ) 2 + ( 1 c ) 2 + ( 1 d ) 2 \frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d} = (\frac {1}{ \sqrt {a}})^2 + (\frac {1}{ \sqrt {b}})^2 + (\frac {1}{ \sqrt {c}})^2 + (\frac {1}{ \sqrt {d}})^2 and ( a + b + c + d ) = ( a ) 2 + ( b ) 2 + ( c ) 2 + ( d ) 2 (a + b + c + d) = (\sqrt {a})^2 + (\sqrt {b})^2 + (\sqrt {c})^2 + (\sqrt {d})^2 So ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) = (a + b + c + d) * (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} + \frac {1}{d}) = ( ( a ) 2 + ( b ) 2 + ( c ) 2 + ( d ) 2 ) ( ( 1 a ) 2 + ( 1 b ) 2 + ( 1 c ) 2 + ( 1 d ) 2 ) ((\sqrt {a})^2 + (\sqrt {b})^2 + (\sqrt {c})^2 + (\sqrt {d})^2) *((\frac {1}{ \sqrt {a}})^2 + (\frac {1}{ \sqrt {b}})^2 + (\frac {1}{ \sqrt {c}})^2 + (\frac {1}{ \sqrt {d}})^2) By Cauchy-Schwarz Inequality,

( a 1 a + b 1 b + c 1 c + d 1 d ) 2 = \geq (\sqrt {a} * \frac {1}{ \sqrt {a}} + \sqrt {b} * \frac {1}{ \sqrt {b}} + \sqrt {c} * \frac {1}{ \sqrt {c}} + \sqrt {d} * \frac {1}{ \sqrt {d}})^2 = ( 1 + 1 + 1 + 1 ) 2 = ( 4 ) 2 = 16 (1 + 1 + 1 + 1)^2 = (4)^2 = \boxed{16}

Wouldn't it be possible to skip the step of using the squareroots? Then you could imply that (a + b + c + d) (a^(-1) + b^(-1) + c^(-1) + d^(-1)) >= a a^(-1) + b b^(-1) + c c^(-1) + d d^(-1), which gives the same result if we consider the equality of these two equations.

Urim Ademi - 1 year, 2 months ago
Anna Anant
Nov 13, 2014

simple...put a=b=c=d=1/4...So, 1/a+1/b+1/c+1/d=16

How did you come up with one-fourth? Please explain it thoroughly.

Russel Ryan Floresca - 5 years, 3 months ago

Log in to reply

to get the minimum value just assume a=b=c=d=t. Then according to a+b+c+d=1 , we get 4t=1 , hence t= 1/4. Thus a=b=c=d= 1/4. Similarly in coordinate geometry if such question comes on a triangle , just assume the triangle to be equilateral, that will help you to save time in competitive exams

Shweta Chauhan - 5 months ago

According to Bunyakovsky inequality: a + b + c + d 1 a + 1 b + 1 c + 1 d ( 1 + 1 + 1 + 1 ) 2 = 4 2 = 16 \frac{a+b+c+d}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \ge (1+1+1+1)^2=4^2=16 ( 1 a + 1 b + 1 c + 1 d ) 16 \Rightarrow (\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}) \ge 16 M I N ( ( 1 a + 1 b + 1 c + 1 d ) = 16 MIN((\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})=\boxed{16} "=" happens when a=b=c=d=1/4

Please can you state bunyakovsky's inequality

chioma Stella - 1 year, 5 months ago
Shree Ganesh
Jul 25, 2016

We can get it by directly applying Titu's lemma

Laurent Verweijen
Dec 24, 2018

a + b + c + d = 1 a + b + c +d = 1

According to Cauchy–Schwarz inequality:

( 1 a + 1 b + 1 c + 1 d ) ( a + b + c + d ) ( a a + b b + c c + d d ) 2 \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) \left(a+b+c+d\right) \ge \left(\frac{\sqrt{a}}{\sqrt{a}} +\frac{\sqrt{b}}{\sqrt{b}} +\frac{\sqrt{c}}{\sqrt{c}} +\frac{\sqrt{d}}{\sqrt{d}}\right)^2

Therefore:

1 a + 1 b + 1 c + 1 d 16 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d} \ge 16

Tan Peng
Aug 26, 2018

By Cauchy-Schwarz inequality, [ 1 a \frac{1}{a} + 1 b \frac{1}{b} + 1 c \frac{1}{c} + 1 d \frac{1}{d} ] (a+b+c+d) \geq { a / a \sqrt{a/a} + b / b \sqrt{b/b} + c / c \sqrt{c/c} + d / d \sqrt{d/d} } × \times { a / a \sqrt{a/a} + b / b \sqrt{b/b} + c / c \sqrt{c/c} + d / d \sqrt{d/d} } Which becomes 1 a \frac{1}{a} + 1 b \frac{1}{b} + 1 c \frac{1}{c} + 1 d \frac{1}{d} \geq 4 × \times 4 Therefore the minimum value is 16

Saket Joshi
Apr 21, 2015

I know of the obvious solution, but please point out where i am going wrong in this approach Using Holder's Inequality: [ a^-1 + b^-1 + c^-1 + d^-1 ] [ 1^-1 +1^-1 +1^-1 +1^-1 ] >= [ a+ b+ c+ d ]^-1 => Required >= 1/4

Javier Sanjuan
Dec 31, 2014

Easy one. a+b+c+d=1, this will be called eq(1), the minimun its obtained when all numbers are the same, then suppose a=b=c=d=k, replacing on eq(1) we have k=1/4. Then 1/a+1/b+1/c+1/d became 4*(1/1/4)=16.

Ralston Rhoden
Nov 13, 2014

(a+b+c+d) *((1/a +(1/b) +(1/c)+(1/d)) >_ (1 +1 +1 +1)^2 or 16 then we realize that the solution must be the same or 1/4

Hi Bye
Jul 19, 2019

AM-GM also works easily. Applying it twice, we can get a + b + c + d 4 a b c d 4 \frac{a+b+c+d}{4} \ge \sqrt[4]{abcd} and \text{and} 1 a + 1 b + 1 c + 1 d 4 1 a b c d 4 . \frac{\frac 1a + \frac 1b + \frac 1c + \frac 1d}{4} \ge \sqrt[4]{\frac{1}{abcd}}. Multiplying both equations together, we get ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 1 4 × 16. (a+b+c+d)\left(\frac 1a + \frac 1b + \frac 1c + \frac 1d\right) \ge \sqrt[4]{1}\times 16. Noting that a + b + c + d = 1 a+b+c+d = 1 , we get that 1 a + 1 b + 1 c + 1 d 16 . \frac 1a + \frac 1b + \frac 1c + \frac 1d \ge \boxed{16}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...