Crazy function

Algebra Level 5

{ f ( 1 ) = 0 f ( 2 ) = 1 f ( 4 ) = 2 f ( 8 ) = 3 f ( 16 ) = 4 f ( 32 ) = 5 \begin{cases} f(1) = 0 \\ f(2)=1 \\ f(4)=2 \\ f(8)=3 \\ f(16)=4 \\ f(32)=5 \end{cases}

Let f ( x ) f(x) be a polynomial of degree 5 satisfying the system of equations above. If the coefficient of x x in f ( x ) f(x) can be expressed as p q \dfrac pq , where p p and q q are coprime positive integers, find p + q p+q .


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Choi Chakfung
May 13, 2016

w e o b s e r v e t h a t f ( 2 x ) f ( x ) = 1 f o r 1 , 2 , 4 , 8 , 16. d o n o t e g ( x ) = f ( 2 x ) ( x ) 1 f o r 1 , 2 , 4 , 8 , 16 g ( x ) = 0 w h e n x = 1 , 2 , 4 , 8 , 16 g ( x ) = a ( x 1 ) ( x 2 ) ( x 4 ) ( x 8 ) ( x 16 ) , w h e r e a i s c o n s t a n t w h e n x = 0 g ( 0 ) = a ( 1 ) ( 2 ) ( 4 ) ( 8 ) ( 16 ) 1 = a ( 1 ) ( 2 ) ( 4 ) ( 8 ) ( 16 ) a = 1 1 × 2 × 4 × 8 × 16 g ( x ) = ( x 1 ) ( x 2 ) ( x 4 ) ( x 8 ) ( x 16 ) 1 × 2 × 4 × 8 × 16 T h e c o e f f i c i e n t o f x i n g ( x ) i s 1 1 + 1 2 + 1 4 + 1 8 + 1 16 = 31 16 ( ) ( ) f o r p e o p l e w h o d o n o t u n d e r s t a n d o n l y . ( x t e r m i n g ( x ) i s f o r m e d b y t i m i n g f o u r n u m b e r f r o m 1 , 2 , 4 , 8 , 16 a n d x 1 × 2 × 4 × 8 1 × 2 × 4 × 8 × 16 x + 1 × 2 × 4 × 16 1 × 2 × 4 × 8 × 16 x + 1 × 2 × 8 × 16 1 × 2 × 4 × 8 × 16 x + 1 × 4 × 8 × 16 1 × 2 × 4 × 8 × 16 x + 2 × 4 × 8 × 16 1 × 2 × 4 × 8 × 16 x T h e c o e f f i c i e n t o f x i n g ( x ) i s 1 1 x + 1 2 x + 1 4 x + 1 8 x + 1 16 x = 31 16 x ) f o r t h e c o e f f i c i e n t o f x t e r m i n g ( x ) i s s a m e a s f ( x ) . T h e r e f o r e a n s w e r i s 31 + 16 = 47 we\quad observe\quad that\quad f(2x)-f(x)=1\quad for\quad 1,2,4,8,16.\\ donote\quad g(x)=f(2x)-(x)-1\quad for\quad 1,2,4,8,16\\ g(x)=0\quad when\quad x=1,2,4,8,16\\ \Rightarrow g(x)=a(x-1)(x-2)(x-4)(x-8)(x-16),\quad where\quad a\quad is\quad constant\\ when\quad x\quad =0\\ g(0)=a(-1)(-2)(-4)(-8)(-16)\\ -1=a(-1)(-2)(-4)(-8)(-16)\\ a=\frac { 1 }{ 1\times 2\times 4\times 8\times 16 } \\ g(x)=\frac { (x-1)(x-2)(x-4)(x-8)(x-16) }{ 1\times 2\times 4\times 8\times 16 } \\ The\quad coefficient\quad of\quad x\quad in\quad g(x)\quad is\quad \frac { 1 }{ 1 } +\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +\frac { 1 }{ 16 } =\frac { 31 }{ 16 } (\ast )\\ (\ast )for\quad people\quad who\quad do\quad not\quad understand\quad only.\\ (x\quad term\quad in\quad g(x)\quad is\quad formed\quad by\quad timing\quad four\quad number\quad from\quad 1,2,4,8,16\quad and\quad x\\ \quad \Rightarrow \quad \frac { 1\times 2\times 4\times 8 }{ 1\times 2\times 4\times 8\times 16 } x\quad +\frac { 1\times 2\times 4\times 16 }{ 1\times 2\times 4\times 8\times 16 } x\quad +\frac { 1\times 2\times 8\times 16 }{ 1\times 2\times 4\times 8\times 16 } x+\frac { 1\times 4\times 8\times 16 }{ 1\times 2\times 4\times 8\times 16 } x+\frac { 2\times 4\times 8\times 16 }{ 1\times 2\times 4\times 8\times 16 } x\\ \Rightarrow The\quad coefficient\quad of\quad x\quad in\quad g(x)\quad is\quad \frac { 1 }{ 1 } x+\frac { 1 }{ 2 } x+\frac { 1 }{ 4 } x+\frac { 1 }{ 8 } x+\frac { 1 }{ 16 } x=\frac { 31 }{ 16 } x)\\ \\ for\quad the\quad coefficient\quad of\quad x\quad term\quad in\quad g(x)\quad is\quad same\quad as\quad f(x).\quad \\ Therefore\quad answer\quad is\quad 31+16=47

But how is the coefficient of x same in both the polynomials f(x) and g(x)?

Achal Jain - 4 years, 5 months ago

Log in to reply

for any f(x), let say f(x)=ax^n+bx^(n-1)+...+cx+d. f(2x)-f(x)=a(2x)^n+b(2x)^n-1+...+c(2x)+d-(ax^n+bx^(n-1)+...+cx+d), By consider the coefficient of x only =2cx-cx=cx.As g(x)=f(2x)-f(x),the coefficient of x in g(x)= that in f(x)

choi chakfung - 4 years, 5 months ago

Log in to reply

Now i got it thanx

Achal Jain - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...