⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ f ( 1 ) = 0 f ( 2 ) = 1 f ( 4 ) = 2 f ( 8 ) = 3 f ( 1 6 ) = 4 f ( 3 2 ) = 5
Let f ( x ) be a polynomial of degree 5 satisfying the system of equations above. If the coefficient of x in f ( x ) can be expressed as q p , where p and q are coprime positive integers, find p + q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
But how is the coefficient of x same in both the polynomials f(x) and g(x)?
Log in to reply
for any f(x), let say f(x)=ax^n+bx^(n-1)+...+cx+d. f(2x)-f(x)=a(2x)^n+b(2x)^n-1+...+c(2x)+d-(ax^n+bx^(n-1)+...+cx+d), By consider the coefficient of x only =2cx-cx=cx.As g(x)=f(2x)-f(x),the coefficient of x in g(x)= that in f(x)
Problem Loading...
Note Loading...
Set Loading...
w e o b s e r v e t h a t f ( 2 x ) − f ( x ) = 1 f o r 1 , 2 , 4 , 8 , 1 6 . d o n o t e g ( x ) = f ( 2 x ) − ( x ) − 1 f o r 1 , 2 , 4 , 8 , 1 6 g ( x ) = 0 w h e n x = 1 , 2 , 4 , 8 , 1 6 ⇒ g ( x ) = a ( x − 1 ) ( x − 2 ) ( x − 4 ) ( x − 8 ) ( x − 1 6 ) , w h e r e a i s c o n s t a n t w h e n x = 0 g ( 0 ) = a ( − 1 ) ( − 2 ) ( − 4 ) ( − 8 ) ( − 1 6 ) − 1 = a ( − 1 ) ( − 2 ) ( − 4 ) ( − 8 ) ( − 1 6 ) a = 1 × 2 × 4 × 8 × 1 6 1 g ( x ) = 1 × 2 × 4 × 8 × 1 6 ( x − 1 ) ( x − 2 ) ( x − 4 ) ( x − 8 ) ( x − 1 6 ) T h e c o e f f i c i e n t o f x i n g ( x ) i s 1 1 + 2 1 + 4 1 + 8 1 + 1 6 1 = 1 6 3 1 ( ∗ ) ( ∗ ) f o r p e o p l e w h o d o n o t u n d e r s t a n d o n l y . ( x t e r m i n g ( x ) i s f o r m e d b y t i m i n g f o u r n u m b e r f r o m 1 , 2 , 4 , 8 , 1 6 a n d x ⇒ 1 × 2 × 4 × 8 × 1 6 1 × 2 × 4 × 8 x + 1 × 2 × 4 × 8 × 1 6 1 × 2 × 4 × 1 6 x + 1 × 2 × 4 × 8 × 1 6 1 × 2 × 8 × 1 6 x + 1 × 2 × 4 × 8 × 1 6 1 × 4 × 8 × 1 6 x + 1 × 2 × 4 × 8 × 1 6 2 × 4 × 8 × 1 6 x ⇒ T h e c o e f f i c i e n t o f x i n g ( x ) i s 1 1 x + 2 1 x + 4 1 x + 8 1 x + 1 6 1 x = 1 6 3 1 x ) f o r t h e c o e f f i c i e n t o f x t e r m i n g ( x ) i s s a m e a s f ( x ) . T h e r e f o r e a n s w e r i s 3 1 + 1 6 = 4 7