c + b = ? c+b = ?

Algebra Level 3

Given that a 2 3 2 3 3 2 3 + 2 = 0 a^2 - 3^{\frac 23} - 3^{-\frac 2{3}} +2 = 0 and 9 a 3 = c b a 9a^3= c - ba , where b , c Z b,c \in \mathbb{Z} , find b + c b+c .


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 27, 2018

Given that a 2 3 2 3 3 2 3 + 2 = 0 a^2 - 3^\frac 23 - 3^{-\frac 23} + 2 = 0 , therefore,

a 2 = 3 2 3 2 + 3 2 3 = ( 3 3 1 3 3 ) 2 a = 3 3 1 3 3 Taking a > 0 a 3 = 3 3 3 3 + 3 3 3 1 3 = 8 3 3 ( 3 3 1 3 3 ) = 8 3 3 a 9 a 3 = 24 27 a \begin{aligned} a^2 & = 3^\frac 23 - 2 + 3^{-\frac 23} \\ & = \left(\sqrt[3] 3-\frac 1{\sqrt[3]3}\right)^2 \\ \implies a & = \sqrt[3] 3-\frac 1{\sqrt[3]3} & \small \color{#3D99F6} \text{Taking }a > 0 \\ a^3 & = 3 - 3\sqrt[3]3+\frac 3{\sqrt[3]3} - \frac 13 \\ & = \frac 83 - 3\left(\sqrt[3]3-\frac 1{\sqrt[3]3}\right) \\ & = \frac 83 - 3a \\ \implies 9a^3 & = 24 - 27a \end{aligned}

Therefore, b + c = 24 + 27 = 51 b+c=24+27 = \boxed{51} .

'a' can be negative.

Log in to reply

Yes, then 9 a 3 = 24 27 a 9*a^3 = {\color{#D61F06}- 24} - 27a . Not the answer we want.

Chew-Seong Cheong - 2 years, 6 months ago
Munem Shahriar
Aug 27, 2018

a 2 3 2 3 3 2 3 + 2 = 0 a 2 = 3 2 3 + 3 2 3 2 a 2 = ( 3 1 3 ) 2 + ( 3 1 3 ) 2 2 3 1 3 3 1 3 a 2 = ( 3 1 3 3 1 3 ) 2 a = 3 1 3 3 1 3 a 3 = ( 3 1 3 3 1 3 ) 3 [ Cube both sides ] a 3 = ( 3 1 3 ) 3 ( 3 1 3 ) 3 3 3 1 3 3 1 3 ( 3 1 3 3 1 3 ) a 3 = 3 3 1 3 3 0 a [ 3 1 3 3 1 3 = a ] a 3 = 3 1 3 3 a 9 a 3 = 27 3 3 ( 9 ) a [ Multiply both sides by 9 ] 9 a 3 = 24 27 a \large \begin{aligned} a^2 - 3^{\frac 23} - 3^{-\frac 23} + 2 & = 0 \\ \Rightarrow a^2 & = 3^{\frac23} + 3^{-\frac 23} -2 \\ \Rightarrow a^2 & = \left(3^{\frac 13} \right)^2 + \left(3^{\frac 13} \right)^2 - 2 \cdot 3^{\frac 13} \cdot 3^{-\frac13} \\ \Rightarrow a^2 & = \left(3^{\frac 13} - 3^{-\frac 13} \right)^2 \\ \Rightarrow a & = 3^{\frac 13} - 3^{-\frac 13} \\ \Rightarrow a^3 & = \left(3^{\frac 13} - 3^{-\frac 13} \right)^3 ~~~~~[\text{Cube both sides}] \\ \Rightarrow a^3 & = \left(3^{\frac 13}\right)^3 - \left(3^{-\frac 13} \right)^3 - 3 \cdot 3^{\frac 13} \cdot 3^{-\frac 13} \left(3^{\frac 13} - 3^{-\frac 13} \right) \\ \Rightarrow a^3 & = 3 -3^{-1} - 3 \cdot 3^0 a ~~~~ \left[3^{\frac 13} - 3^{-\frac 13} = a \right] \\ \Rightarrow a^3 & = 3 - \frac 13 - 3a \\ \Rightarrow 9a^3 & = 27 - 3 - 3(9)a ~~~~[\text{Multiply both sides by 9}] \\ \implies 9a^3 & = 24 - 27a \\ \end{aligned}

So c = 24 c = 24 and b = 27 b = 27 . Hence b + c = 24 + 27 = 51 b + c = 24 + 27 = \boxed{51}

Note: ( a b ) 3 = a 3 b 3 3 a b ( a b ) (a - b)^3 = a^3 - b^3 - 3ab(a-b)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...