Given that a 2 − 3 3 2 − 3 − 3 2 + 2 = 0 and 9 a 3 = c − b a , where b , c ∈ Z , find b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
'a' can be negative.
Log in to reply
Yes, then 9 ∗ a 3 = − 2 4 − 2 7 a . Not the answer we want.
a 2 − 3 3 2 − 3 − 3 2 + 2 ⇒ a 2 ⇒ a 2 ⇒ a 2 ⇒ a ⇒ a 3 ⇒ a 3 ⇒ a 3 ⇒ a 3 ⇒ 9 a 3 ⟹ 9 a 3 = 0 = 3 3 2 + 3 − 3 2 − 2 = ( 3 3 1 ) 2 + ( 3 3 1 ) 2 − 2 ⋅ 3 3 1 ⋅ 3 − 3 1 = ( 3 3 1 − 3 − 3 1 ) 2 = 3 3 1 − 3 − 3 1 = ( 3 3 1 − 3 − 3 1 ) 3 [ Cube both sides ] = ( 3 3 1 ) 3 − ( 3 − 3 1 ) 3 − 3 ⋅ 3 3 1 ⋅ 3 − 3 1 ( 3 3 1 − 3 − 3 1 ) = 3 − 3 − 1 − 3 ⋅ 3 0 a [ 3 3 1 − 3 − 3 1 = a ] = 3 − 3 1 − 3 a = 2 7 − 3 − 3 ( 9 ) a [ Multiply both sides by 9 ] = 2 4 − 2 7 a
So c = 2 4 and b = 2 7 . Hence b + c = 2 4 + 2 7 = 5 1
Note: ( a − b ) 3 = a 3 − b 3 − 3 a b ( a − b )
Problem Loading...
Note Loading...
Set Loading...
Given that a 2 − 3 3 2 − 3 − 3 2 + 2 = 0 , therefore,
a 2 ⟹ a a 3 ⟹ 9 a 3 = 3 3 2 − 2 + 3 − 3 2 = ( 3 3 − 3 3 1 ) 2 = 3 3 − 3 3 1 = 3 − 3 3 3 + 3 3 3 − 3 1 = 3 8 − 3 ( 3 3 − 3 3 1 ) = 3 8 − 3 a = 2 4 − 2 7 a Taking a > 0
Therefore, b + c = 2 4 + 2 7 = 5 1 .