Ceil The Limit!

Calculus Level 4

lim n x + 2 x + 3 x + + n x n 2 \large \lim_{n\to\infty} \dfrac{ \lceil x \rceil + \lceil 2x \rceil + \lceil 3x \rceil + \cdots + \lceil n x \rceil }{n^2}

Let a , b , x a,b,x be constants such that the limit above can be expressed as a x + b ax + b .

Find the value of a 2 + b 2 a^2+b^2 .


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First, we use sandwich theorem to simplify the sum to lim n x + 2 x + + n x n 2 \large \lim_{n\to\infty} \dfrac{ x + 2x + \cdots + n x }{n^2}

This can be solved using sum of 1st n natural numbers and taking its limit which turns out to be x 2 \frac{x}{2} So answer is 0.25

As x x x + 1 x \leq \lceil x \rceil \leq x+1 , taking sum and neglecting the term of n compared to n 2 n^2 , we get the required sum.

Ajinkya Shivashankar - 4 years, 4 months ago
Chew-Seong Cheong
Jan 27, 2017

L = lim n x + 2 x + 3 x + + n x n 2 = lim n x + 2 x + 3 x + + n x n 2 = lim n n ( n + 1 ) x 2 n 2 = lim n ( n + 1 ) x 2 n = lim n ( x 2 + x 2 n ) = x 2 \begin{aligned} L & = \lim_{n \to \infty} \frac {\lceil x \rceil +\lceil 2x \rceil + \lceil 3 x \rceil + \cdots + \lceil n x \rceil}{n^2} \\ & = \lim_{n \to \infty} \frac {x+2x+3x+\cdots + nx}{n^2} \\ & = \lim_{n \to \infty} \frac {\frac {n(n+1)x}2}{n^2} \\ & = \lim_{n \to \infty} \frac {(n+1)x}{2n} \\ & = \lim_{n \to \infty} \left(\frac x2 + \frac x{2n} \right) \\ & = \frac x2 \end{aligned}

a 2 + b 2 = ( 1 2 ) 2 + 0 2 = 1 4 = 0.25 \implies a^2 + b^2 = \left(\frac 12\right)^2 + 0^2 = \frac 14 = \boxed{0.25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...