This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solved this ceiling integral the same way as well, Chew-Seong...thanks for posting!
Step 1: Find discontinuities
Because the expression contains a ceiling function, we know that the integrand is discontinuous whenever x + 4 1 + 2 1 is an integer. Therefore, for any n ∈ Z , the function is discontinuous for any x satisfying:
n = x + 4 1 + 2 1
Solving for x:
x = n 2 − n , for any non-negative n ∈ Z
Step 2: Rewrite the integral
From here, we can rewrite the integral, but first it's easier to split it up as − 4 1 isn't an integer.
∫ − 4 1 ∞ e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x = ∫ − 4 1 0 e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x + ∫ 0 ∞ e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x
We can rewrite the second integral as a sum now that we know the general form for the x values which make the function discontinuous:
∫ 0 ∞ e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x = n = 1 ∑ ∞ ∫ n 2 − n n 2 + n e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x
We can simplify this even further, as we know on the interval ( n 2 − n , n 2 + n ) , ⌈ x + 4 1 + 2 1 ⌉ = n + 1
n = 1 ∑ ∞ ∫ n 2 − n n 2 + n e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x = n = 1 ∑ ∞ ∫ n 2 − n n 2 + n e − n d x
Our final expression becomes:
∫ − 4 1 ∞ e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x = ∫ − 4 1 0 e 0 d x + n = 1 ∑ ∞ ∫ n 2 − n n 2 + n e − n d x
Step 3: Evaluate the integral
∫ − 4 1 0 1 d x = 4 1
∫ n 2 − n n 2 + n e − n d x = ( e 1 ) n x ∣ ∣ n 2 − n n 2 + n = ( e 1 ) n ( n 2 + n ) − ( e 1 ) n ( n 2 − n ) = 2 n ( e 1 ) n
4 1 + 2 n = 1 ∑ ∞ n ( e 1 ) n
Step 4: Evaluate the sum
The sum
n = 1 ∑ ∞ n ( e 1 ) n
can be evaluated as:
S = 1 ( e 1 ) 1 + 2 ( e 1 ) 2 + 3 ( e 1 ) 3 + 4 ( e 1 ) 4 + . . .
− e 1 S = − 1 ( e 1 ) 2 − 2 ( e 1 ) 3 − 3 ( e 1 ) 4 − 4 ( e 1 ) 5 + . . .
( 1 − e 1 ) S = ( e 1 ) 1 + ( e 1 ) 2 + ( e 1 ) 3 + ( e 1 ) 4 + . . .
( 1 − e 1 ) S = 1 − e 1 e 1
( e e − 1 ) S = e − 1 1
S = ( e − 1 ) 2 e
Therefore,
∫ − 4 1 ∞ e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x = 4 1 + ( e − 1 ) 2 2 e = 2 . 0 9 1
Problem Loading...
Note Loading...
Set Loading...
Consider the function f ( x ) = ⌈ x + 4 1 + 2 1 ⌉ for x ≥ − 4 1 and note that
f ( x ) = 1 f ( x ) = 2 f ( x ) = 3 f ( x ) = 4 ⋯ ⟹ f ( x ) = n w h e n w h e n w h e n w h e n ⋯ w h e n − 4 1 ≤ x ≤ 0 0 < x ≤ 2 2 < x ≤ 6 6 < x ≤ 1 2 ⋯ ( n − 1 ) ( n − 2 ) < x ≤ n ( n − 1 ) for n ≥ 0
Then we have
I = ∫ − 4 1 ∞ e 1 − ⌈ x + 4 1 + 2 1 ⌉ d x = ∫ − 4 1 0 e 0 d x + ∫ 0 2 e − 1 d x + ∫ 2 6 e − 2 d x + ∫ 6 1 2 e − 3 d x + ⋯ = 0 − ( − 4 1 ) + e 2 − 0 + e 2 6 − 2 + e 3 1 2 − 6 + ⋯ = 4 1 + e 2 + e 2 4 + e 3 6 + e 4 8 + ⋯ = 4 1 + e 2 ( 1 + e 2 + e 2 3 + e 3 4 + ⋯ ) = 4 1 + e 2 ⋅ d x d [ x + x 2 + x 3 + x 4 + ⋯ ] x = 1 / e = 4 1 + e 2 ⋅ d x d [ 1 − x x ] x = 1 / e = 4 1 + e 2 [ ( 1 − x ) 2 1 ] x = 1 / e = 4 1 + ( e − 1 ) 2 2 e ≈ 2 . 0 9 for ∣ x ∣ < 1