Ceiling Integral

Calculus Level pending

1 4 e 1 x + 1 4 + 1 2 d x = ? \large \int_{-\frac{1}{4}}^{\infty}\ e^{1 - \left \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \right \rceil} \, dx = \, ?

Notation: \lceil \cdot \rceil denotes the ceiling function .


The answer is 2.091.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 29, 2020

Consider the function f ( x ) = x + 1 4 + 1 2 f(x) = \left \lceil \sqrt{x+\frac 14} + \frac 12 \right \rceil for x 1 4 x \ge - \frac 14 and note that

f ( x ) = 1 w h e n 1 4 x 0 f ( x ) = 2 w h e n 0 < x 2 f ( x ) = 3 w h e n 2 < x 6 f ( x ) = 4 w h e n 6 < x 12 f ( x ) = n w h e n ( n 1 ) ( n 2 ) < x n ( n 1 ) for n 0 \begin{array} {rll} f(x) = 1 & \rm when & -\frac 14 \le x \le 0 \\ f(x) = 2 & \rm when & 0 < x \le 2 \\ f(x) = 3 & \rm when & 2 < x \le 6 \\ f(x) = 4 & \rm when & 6 < x \le 12 \\ \cdots & \cdots & \cdots \\ \implies f(x) = n & \rm when & (n-1)(n-2) < x \le n(n-1) \text{ for }n \ge 0 \end{array}

Then we have

I = 1 4 e 1 x + 1 4 + 1 2 d x = 1 4 0 e 0 d x + 0 2 e 1 d x + 2 6 e 2 d x + 6 12 e 3 d x + = 0 ( 1 4 ) + 2 0 e + 6 2 e 2 + 12 6 e 3 + = 1 4 + 2 e + 4 e 2 + 6 e 3 + 8 e 4 + = 1 4 + 2 e ( 1 + 2 e + 3 e 2 + 4 e 3 + ) = 1 4 + 2 e d d x [ x + x 2 + x 3 + x 4 + ] x = 1 / e = 1 4 + 2 e d d x [ x 1 x ] x = 1 / e for x < 1 = 1 4 + 2 e [ 1 ( 1 x ) 2 ] x = 1 / e = 1 4 + 2 e ( e 1 ) 2 2.09 \begin{aligned} I & = \int_{-\frac 14}^\infty e^{1-\left \lceil \sqrt{x+\frac 14} + \frac 12 \right \rceil} dx \\ & = \int_{-\frac 14}^0 e^0 dx + \int_0^2 e^{-1} dx + \int_2^6 e^{-2} dx + \int_6^{12} e^{-3} dx + \cdots \\ & = 0 - \left(-\frac 14\right) + \frac {2-0}e + \frac {6-2}{e^2} + \frac {12-6}{e^3} + \cdots \\ & = \frac 14 + \frac 2e + \frac 4{e^2} + \frac 6{e^3} + \frac 8{e^4} + \cdots \\ & = \frac 14 + \frac 2e \left(1 + \frac 2e + \frac 3{e^2} + \frac 4{e^3} + \cdots \right) \\ & = \frac 14 + \frac 2e \cdot \frac d{dx} \bigg[ x+x^2 + x^3 + x^4 + \cdots \bigg]_{x =1/e} \\ & = \frac 14 + \frac 2e \cdot \frac d{dx} \left[\frac x{1-x} \right]_{x =1/e} & \small \blue{\text{for }|x| < 1} \\ & = \frac 14 + \frac 2e \left[\frac 1{(1-x)^2} \right]_{x =1/e} \\ & = \frac 14 + \frac {2e}{(e-1)^2} \approx \boxed{2.09} \end{aligned}

Solved this ceiling integral the same way as well, Chew-Seong...thanks for posting!

tom engelsman - 6 months, 2 weeks ago

Log in to reply

You are welcome

Chew-Seong Cheong - 6 months, 2 weeks ago
Braden Dean
Nov 28, 2020

Step 1: Find discontinuities

Because the expression contains a ceiling function, we know that the integrand is discontinuous whenever x + 1 4 + 1 2 \sqrt{x + \frac{1}{4}} + \frac{1}{2} is an integer. Therefore, for any n Z n \in \mathbb{Z} , the function is discontinuous for any x x satisfying:

n = x + 1 4 + 1 2 n = \sqrt{x + \frac{1}{4}} + \frac{1}{2}

Solving for x:

x = n 2 n x = n^2 - n , for any non-negative n Z n \in \mathbb{Z}

Step 2: Rewrite the integral

From here, we can rewrite the integral, but first it's easier to split it up as 1 4 - \frac{1}{4} isn't an integer.

1 4 e 1 x + 1 4 + 1 2 d x = 1 4 0 e 1 x + 1 4 + 1 2 d x + 0 e 1 x + 1 4 + 1 2 d x \displaystyle\int_{-\frac{1}{4}}^{\infty}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx = \displaystyle\int_{-\frac{1}{4}}^{0}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx + \displaystyle\int_{0}^{\infty}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx

We can rewrite the second integral as a sum now that we know the general form for the x values which make the function discontinuous:

0 e 1 x + 1 4 + 1 2 d x = n = 1 n 2 n n 2 + n e 1 x + 1 4 + 1 2 d x \displaystyle\int_{0}^{\infty} e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx = \displaystyle\sum_{n=1}^{\infty} \displaystyle\int_{n^{2} - n}^{n^2 + n}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx

We can simplify this even further, as we know on the interval ( n 2 n , n 2 + n ) (n^{2} - n, n^{2} + n) , x + 1 4 + 1 2 = n + 1 \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil = n + 1

n = 1 n 2 n n 2 + n e 1 x + 1 4 + 1 2 d x = n = 1 n 2 n n 2 + n e n d x \displaystyle\sum_{n=1}^{\infty} \displaystyle\int_{n^{2} - n}^{n^2 + n}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx = \displaystyle\sum_{n=1}^{\infty} \displaystyle\int_{n^{2} - n}^{n^2 + n}\ e^{-n} dx

Our final expression becomes:

1 4 e 1 x + 1 4 + 1 2 d x = 1 4 0 e 0 d x + n = 1 n 2 n n 2 + n e n d x \displaystyle\int_{-\frac{1}{4}}^{\infty}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx = \displaystyle\int_{-\frac{1}{4}}^{0}\ e^{0} dx + \displaystyle\sum_{n=1}^{\infty} \displaystyle\int_{n^{2} - n}^{n^2 + n}\ e^{-n} dx

Step 3: Evaluate the integral

1 4 0 1 d x = 1 4 \displaystyle\int_{-\frac{1}{4}}^{0}\ 1 dx = \frac{1}{4}

n 2 n n 2 + n e n d x = ( 1 e ) n x n 2 n n 2 + n = ( 1 e ) n ( n 2 + n ) ( 1 e ) n ( n 2 n ) = 2 n ( 1 e ) n \displaystyle\int_{n^{2} - n}^{n^2 + n}\ e^{-n} dx = (\frac{1}{e})^{n}x\big|_{n^{2}-n}^{n^{2}+n} = (\frac{1}{e})^{n}(n^{2} + n) - (\frac{1}{e})^{n}(n^{2} - n) = 2n(\frac{1}{e})^{n}

1 4 + 2 n = 1 n ( 1 e ) n \frac{1}{4} + 2\displaystyle\sum_{n=1}^{\infty}n(\frac{1}{e})^{n}

Step 4: Evaluate the sum

The sum

n = 1 n ( 1 e ) n \displaystyle\sum_{n=1}^{\infty}n(\frac{1}{e})^{n}

can be evaluated as:

S = 1 ( 1 e ) 1 + 2 ( 1 e ) 2 + 3 ( 1 e ) 3 + 4 ( 1 e ) 4 + . . . S = 1(\frac{1}{e})^{1} + 2(\frac{1}{e})^{2} + 3(\frac{1}{e})^{3} + 4(\frac{1}{e})^{4} + ...

1 e S = 1 ( 1 e ) 2 2 ( 1 e ) 3 3 ( 1 e ) 4 4 ( 1 e ) 5 + . . . -\frac{1}{e}S = -1(\frac{1}{e})^{2} - 2(\frac{1}{e})^{3} - 3(\frac{1}{e})^{4} - 4(\frac{1}{e})^{5} + ...

( 1 1 e ) S = ( 1 e ) 1 + ( 1 e ) 2 + ( 1 e ) 3 + ( 1 e ) 4 + . . . (1-\frac{1}{e})S = (\frac{1}{e})^{1} + (\frac{1}{e})^{2} + (\frac{1}{e})^{3} + (\frac{1}{e})^{4} + ...

( 1 1 e ) S = 1 e 1 1 e (1-\frac{1}{e})S = \frac{\frac{1}{e}}{1 - \frac{1}{e}}

( e 1 e ) S = 1 e 1 (\frac{e-1}{e})S = \frac{1}{e-1}

S = e ( e 1 ) 2 S = \frac{e}{(e-1)^{2}}

Therefore,

1 4 e 1 x + 1 4 + 1 2 d x = 1 4 + 2 e ( e 1 ) 2 = 2.091 \displaystyle\int_{-\frac{1}{4}}^{\infty}\ e^{1 - \lceil \sqrt{x + \frac{1}{4}} + \frac{1}{2} \rceil} dx = \frac{1}{4} + \frac{2e}{(e-1)^{2}} = 2.091

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...