Ceiling on the floor

Algebra Level 5

How many positive integers x x satisfy the equation below?

x 4 + 9 = x \large \lceil \sqrt[4]{x} \rceil + 9 = \lfloor \sqrt{x} \rfloor

Notations:


Try another problem on my set Warming Up and More Practice !


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Fahim Saikat
Jul 25, 2017

Let , x = a 4 + k x=a^4+k where, a 4 a 4 + k < ( a + 1 ) 4 a^4\le a^4+k<(a+1)^4 and, a and k are integer.

a 4 a 4 + k < ( a + 1 ) 4 a 4 x < ( a + 1 ) 4 a 2 x < ( a + 1 ) 2 a 2 x < ( a + 1 ) 2 a^4\le a^4+k<(a+1)^4\\a^4\le x<(a+1)^4\\a^2 \le \sqrt{x} < (a+1)^2\\a^2 \le \lfloor\sqrt{x}\rfloor < (a+1)^2

Again,

a 4 a 4 + k < ( a + 1 ) 4 a 4 x < ( a + 1 ) 4 a x 4 < ( a + 1 ) a^4\le a^4+k<(a+1)^4\\a^4\le x<(a+1)^4\\ a \le \sqrt[4]{x}<(a+1)

So, a = x 4 a=\sqrt[4]{x} or a < x 4 < ( a + 1 ) a < \sqrt[4]{x}<(a+1)

If, a = x 4 a=\sqrt[4]{x} Then, x 4 + 9 = x a + 9 = a 2 \lceil \sqrt[4]{x} \rceil+9=\lfloor\sqrt{x}\rfloor\\a+9=a^2

solving the equation we get , a = 1 ± 37 2 a=\frac{1\pm\sqrt{37}}{2} which is not an integer.

So, it should be , a < x 4 < ( a + 1 ) a < \sqrt[4]{x}<(a+1) , therefore x 4 = ( a + 1 ) \lceil \sqrt[4]{x} \rceil =(a+1)

If, a 2 x a^2 \le \lfloor\sqrt{x}\rfloor we get ,

\begin{aligned}\lceil \sqrt[4]{x} \rceil+9&=\lfloor\sqrt{x}\rfloor\\a+1+9&\ge a^2\\\frac{1-\sqrt{41}}{2}&\le a\le \frac{1+\sqrt{41}}{2}\\-1&\le a\le 3\tag{1}\end{aligned}

If, ( a + 1 ) 2 > x (a+1)^2 > \lfloor\sqrt{x}\rfloor we get ,

\begin{aligned}\lceil \sqrt[4]{x} \rceil+9&=\lfloor\sqrt{x}\rfloor\\a+1+9&< a^2+2a+1\\\frac{-1-\sqrt{37}}{2}&\ge a \hspace{1cm}or, \hspace{1cm}\frac{-1+\sqrt{37}}{2}<a\\-3&> a\hspace{1cm} or,\hspace{1cm} 3<a\tag{2}\end{aligned}

Solving (1) and (2) we get, a = 3 a=3

Let , x = a 2 + s \lfloor\sqrt{x}\rfloor=a^2+s , where s is an integer and , 0 s 2 a 0\le s\le 2a

x 4 + 9 = x a + 1 + 9 = a 2 + s 3 + 1 + 9 = 3 2 + s s = 4 \begin{aligned}\lceil \sqrt[4]{x} \rceil+9&=\lfloor\sqrt{x}\rfloor\\a+1+9&=a^2 +s\\3+1+9&=3^2 + s\\s&=4\end{aligned}

Therefore,

x = a 2 + s = 3 2 + 4 = 13 1 3 2 x < ( 13 + 1 ) 2 169 x < 196 169 x 195 \begin{aligned} \lfloor\sqrt{x}\rfloor&=a^2+s\\&=3^2+4=13\\13^2&\le x < (13+1)^2\\169&\le x < 196\\169&\le x \le 195\end{aligned}

So , there are 195 169 + 1 = 27 195-169+1=\boxed{27} positive integers that satisfy the equation .

Ahmed Moh AbuBakr
Aug 26, 2017

L e t f ( X ) = 9 X . 5 + X . 25 . . . . . . . . f o r f ( X ) = 0 , . . . . . . . . . . . . . X . 5 > 9 , X > 81. 8 1 . 25 = 3 , . . . . . . S o X > ( 9 + 3 ) 2 = 144 = 1 2 2 . . L e t X = 1 3 2 = 169. f ( 169 ) = 9 16 9 . 5 + ( 169 ) . 25 = 9 13 + 3.7.. = 9 13 + 4 = 0. W h e n X . 5 = 14 , f ( 14 ) > 0. 1 4 2 = 196. S o f o r X f r o m 169 t o 196 1 = 195 , w e w i l l g e t f ( X ) = 0. N u m b e r o f s o l u t i o n s = 195 169 + 1 = 27. Let~~f(X)=9-\lfloor X^.5 \rfloor+\lceil X^.25 \rceil........\therefore~for~f(X)=0,.............X^.5>9,~~~\implies~X>81.\\ 81^.25=3,......So~X>(9+3)^2=144=12^2..\\ Let X=13^2=169.\\ \therefore~f(169)=9-\lfloor 169^.5 \rfloor+\lceil (169)^.25 \rceil =9-13+\lceil 3.7.. \rceil =9-13+4=0. \\ When~\lfloor X^.5 \rfloor=14, ~f(14)>0.~~~~~~~~~~~14^2=196.\\ So~for~~X~from~169~to~196-1=195, ~we~will~get~f(X)=0.\\ \therefore~Number~ of~solutions=195-169+1=\Huge \color{#D61F06}{27}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...