If 3 tan − 1 ( 4 1 ) + tan − 1 ( 2 0 1 ) = 4 π − tan − 1 ( x 1 ) , find x to three decimal places.
This problem is part of my set: Geometry
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I made a calculation mistake. My solution is as under.
T
a
n
−
1
x
1
=
2
π
−
T
a
n
(
x
)
.
∴
T
a
n
−
1
(
x
)
=
3
T
a
n
−
1
4
1
+
T
a
n
−
1
2
0
1
+
4
π
.
T
a
n
(
3
T
a
n
−
1
)
=
1
−
3
∗
(
4
1
)
2
3
∗
4
1
−
(
4
1
)
3
=
5
2
4
7
,
∴
x
=
1
−
5
2
4
7
∗
2
0
1
−
2
0
1
∗
1
−
1
∗
5
2
4
7
5
2
4
7
+
2
0
1
+
1
−
5
2
4
7
∗
2
0
1
∗
1
=
1
9
8
5
.
Thinking that there might be a calculation mistake with reciprocal, I have converted into a Tan(x) in the 2nd line.
T
a
n
(
x
+
y
+
z
)
=
1
−
T
a
n
x
∗
T
a
n
y
−
T
a
n
y
∗
T
a
n
z
−
T
a
n
z
∗
T
a
n
x
T
a
n
x
+
T
a
n
y
+
T
a
n
z
−
T
a
n
x
∗
T
a
n
y
∗
T
a
n
z
∴
T
a
n
(
3
x
)
=
1
−
3
T
a
n
2
x
3
T
a
n
x
−
T
a
n
3
x
.
4 π − tan − 1 x 1 tan − 1 1 + x 1 1 − x 1 tan − 1 x + 1 x − 1 ∴ tan − 1 x + 1 x − 1 ⟹ x = 3 tan − 1 4 1 + tan − 1 2 0 1 = tan − 1 1 − 3 ( 4 1 ) 2 4 1 ( 3 − ( 4 1 ) 2 ) + tan − 1 2 0 1 = tan − 1 5 2 4 7 + tan − 1 2 0 1 = tan − 1 1 − 5 2 4 7 × 2 0 1 5 2 4 7 + 2 0 1 = tan − 1 9 9 3 9 9 2 = tan − 1 1 9 8 6 1 9 8 4 = tan − 1 1 9 8 5 + 1 1 9 8 5 − 1 = 1 9 8 5 Multiply up and down by 2
Refer to Eli Ross's briiliant solution here to a similar problem to tackle such questions much faster.
I will post a complete solution soon. Here is a brief outline.
Take arctan(1/x) to L.H.S and 3arctan(1/20) to R.H.S.
Take tan on both sides. You get a fraction in L.H.S and use the triple angle formula on R.H.S and simplify.
Then solve for x you get x=1985.
Problem Loading...
Note Loading...
Set Loading...
From
tan ( 3 tan − 1 4 1 ) = = 1 − 3 tan 2 ( tan − 1 4 1 ) 3 tan ( tan − 1 4 1 ) − tan 3 ( tan − 1 4 1 ) = 1 − 3 ( 4 1 ) 2 3 ( 4 1 ) − ( 4 1 ) 3 1 − 1 6 3 4 3 − 6 4 1 = 6 4 4 8 − 1 × 1 3 1 6 = 5 2 4 7
From Equation
3 tan − 1 ( 4 1 ) + tan − 1 ( 2 0 1 ) = tan ( 3 tan − 1 4 1 + tan − 1 2 0 1 ) = 1 − tan ( 3 tan − 1 4 1 ) tan ( tan − 1 2 0 1 ) tan ( 3 tan − 1 4 1 ) + tan ( tan − 1 2 0 1 ) = 1 − ( 5 2 4 7 ) ( 2 0 1 ) 5 2 4 7 + 2 0 1 = 2 6 0 2 3 5 + 1 3 × 9 9 3 1 0 4 0 = 1 9 8 6 1 9 8 4 = 1 9 8 5 + 1 1 9 8 5 − 1 = x = 4 π − tan − 1 ( x 1 ) tan ( 4 π − tan − 1 x 1 ) 1 + tan ( 4 π ) tan ( tan − 1 x 1 ) tan ( 4 π ) − tan ( tan − 1 x 1 ) 1 + x 1 1 − x 1 x x − 1 × x + 1 x x + 1 x − 1 x + 1 x − 1 1 9 8 5
Notes:
tan ( tan − 1 x ) = x
tan ( 3 x ) = 1 − 3 tan 2 x 3 tan x − tan 3 x
tan ( x + y ) = 1 − tan x tan y tan x + tan y
tan ( x − y ) = 1 + tan x tan y tan x − tan y