Celebration problem marking the end of my exams

Geometry Level 4

If 3 tan 1 ( 1 4 ) + tan 1 ( 1 20 ) = π 4 tan 1 ( 1 x ) 3\tan^{-1}\left(\dfrac14 \right)+\tan^{-1}\left(\dfrac{1}{20} \right)=\dfrac{\pi}{4}-\tan^{-1}\left(\dfrac1x \right) , find x x to three decimal places.


This problem is part of my set: Geometry


The answer is 1985.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ikkyu San
Apr 12, 2016

From

tan ( 3 tan 1 1 4 ) = 3 tan ( tan 1 1 4 ) tan 3 ( tan 1 1 4 ) 1 3 tan 2 ( tan 1 1 4 ) = 3 ( 1 4 ) ( 1 4 ) 3 1 3 ( 1 4 ) 2 = 3 4 1 64 1 3 16 = 48 1 64 × 16 13 = 47 52 \begin{aligned}\tan\left(3\tan^{-1}\dfrac14\right)=&\dfrac{3\tan\left(\tan^{-1}\dfrac14\right)-\tan^3\left(\tan^{-1}\dfrac14\right)}{1-3\tan^2\left(\tan^{-1}\dfrac14\right)}=\dfrac{3\left(\dfrac14\right)-\left(\dfrac14\right)^3}{1-3\left(\dfrac14\right)^2}\\=&\dfrac{\dfrac34-\dfrac1{64}}{1-\dfrac3{16}}=\dfrac{48-1}{64}\times\dfrac{16}{13}=\dfrac{47}{52}\end{aligned}

From Equation

3 tan 1 ( 1 4 ) + tan 1 ( 1 20 ) = π 4 tan 1 ( 1 x ) tan ( 3 tan 1 1 4 + tan 1 1 20 ) = tan ( π 4 tan 1 1 x ) tan ( 3 tan 1 1 4 ) + tan ( tan 1 1 20 ) 1 tan ( 3 tan 1 1 4 ) tan ( tan 1 1 20 ) = tan ( π 4 ) tan ( tan 1 1 x ) 1 + tan ( π 4 ) tan ( tan 1 1 x ) 47 52 + 1 20 1 ( 47 52 ) ( 1 20 ) = 1 1 x 1 + 1 x 235 + 13 260 × 1040 993 = x 1 x × x x + 1 1984 1986 = x 1 x + 1 1985 1 1985 + 1 = x 1 x + 1 x = 1985 \begin{aligned}3\tan^{-1}\left(\dfrac14\right)+\tan^{-1}\left(\dfrac1{20}\right)=&\dfrac{\pi}4-\tan^{-1}\left(\dfrac1x\right)\\\tan\left(3\tan^{-1}\dfrac14+\tan^{-1}\dfrac1{20}\right)=&\tan\left(\dfrac{\pi}4-\tan^{-1}\dfrac1x\right)\\\dfrac{\tan\left(3\tan^{-1}\dfrac14\right)+\tan\left(\tan^{-1}\dfrac1{20}\right)}{1-\tan\left(3\tan^{-1}\dfrac14\right)\tan\left(\tan^{-1}\dfrac1{20}\right)}=&\dfrac{\tan\left(\dfrac{\pi}4\right)-\tan\left(\tan^{-1}\dfrac1x\right)}{1+\tan\left(\dfrac{\pi}4\right)\tan\left(\tan^{-1}\dfrac1x\right)}\\\dfrac{\dfrac{47}{52}+\dfrac1{20}}{1-\left(\dfrac{47}{52}\right)\left(\dfrac1{20}\right)}=&\dfrac{1-\dfrac1x}{1+\dfrac1x}\\\dfrac{235+13}{260}\times\dfrac{1040}{993}=&\dfrac{x-1}x\times\dfrac x{x+1}\\\dfrac{1984}{1986}=&\dfrac{x-1}{x+1}\\\dfrac{1985-1}{1985+1}=&\dfrac{x-1}{x+1}\\x=&\boxed{1985}\end{aligned}


Notes:

tan ( tan 1 x ) = x \tan(\tan^{-1}x)=x

tan ( 3 x ) = 3 tan x tan 3 x 1 3 tan 2 x \tan(3x)=\dfrac{3\tan{x}-\tan^3x}{1-3\tan^2x}

tan ( x + y ) = tan x + tan y 1 tan x tan y \tan(x+y)=\dfrac{\tan{x}+\tan{y}}{1-\tan{x}\tan{y}}

tan ( x y ) = tan x tan y 1 + tan x tan y \tan(x-y)=\dfrac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}

I made a calculation mistake. My solution is as under.
T a n 1 1 x = π 2 T a n ( x ) . T a n 1 ( x ) = 3 T a n 1 1 4 + T a n 1 1 20 + π 4 . T a n ( 3 T a n 1 ) = 3 1 4 ( 1 4 ) 3 1 3 ( 1 4 ) 2 = 47 52 , x = 47 52 + 1 20 + 1 47 52 1 20 1 1 47 52 1 20 1 20 1 1 47 52 = 1985. Tan^{-1}\frac 1 x =\frac \pi 2 - Tan(x).~ \therefore~Tan^{-1}(x)=3Tan^{-1}\frac 1 4+Tan^{-1}\frac 1 {20} +\frac \pi 4.\\ Tan(3Tan^{-1})=\dfrac{3*\frac 1 4 - (\frac 1 4)^3}{1 - 3*(\frac 1 4)^2}=\dfrac{47}{52},\\ \therefore~x=\dfrac{\frac{47}{52}+\frac 1 {20} +1 - \frac{47}{52}*\frac 1 {20} *1} {1- \frac{47}{52}*\frac 1 {20} - \frac 1 {20}*1 - 1*\frac{47}{52} }\\ =1985.

Thinking that there might be a calculation mistake with reciprocal, I have converted into a Tan(x) in the 2nd line.
T a n ( x + y + z ) = T a n x + T a n y + T a n z T a n x T a n y T a n z 1 T a n x T a n y T a n y T a n z T a n z T a n x T a n ( 3 x ) = 3 T a n x T a n 3 x 1 3 T a n 2 x . Tan(x+y+z)=\dfrac{Tan{x}+Tan{y}+Tan{z} - Tan{x}*Tan{y}*Tan{z} }{1 -Tan{x}*Tan{y} - Tan{y}*Tan{z} - Tan{z}*Tan{x} }\\ \therefore Tan(3x)=\dfrac{3Tan{x}-Tan^3x}{1-3Tan^2x}.

Niranjan Khanderia - 5 years, 1 month ago
Chew-Seong Cheong
Mar 14, 2018

π 4 tan 1 1 x = 3 tan 1 1 4 + tan 1 1 20 tan 1 1 1 x 1 + 1 x = tan 1 1 4 ( 3 ( 1 4 ) 2 ) 1 3 ( 1 4 ) 2 + tan 1 1 20 tan 1 x 1 x + 1 = tan 1 47 52 + tan 1 1 20 = tan 1 47 52 + 1 20 1 47 52 × 1 20 = tan 1 992 993 Multiply up and down by 2 = tan 1 1984 1986 tan 1 x 1 x + 1 = tan 1 1985 1 1985 + 1 x = 1985 \begin{aligned} \frac \pi 4 - \tan^{-1} \frac 1x & = 3\tan^{-1} \frac 14 + \tan^{-1} \frac 1{20} \\ \tan^{-1} \frac {1-\frac 1x}{1+\frac 1x} & = \tan^{-1} \frac {\frac 14\left(3-\left(\frac 14 \right)^2\right)}{1-3\left(\frac 14\right)^2} + \tan^{-1} \frac 1{20} \\ \tan^{-1} \frac {x-1}{x+1} & = \tan^{-1} \frac {47}{52} + \tan^{-1} \frac 1{20} \\ & = \tan^{-1} \frac {\frac {47}{52} + \frac 1{20}} {1-\frac {47}{52} \times \frac 1{20}} \\ & = \color{#3D99F6} \tan^{-1} \frac {992}{993} & \small \color{#3D99F6} \text{Multiply up and down by }2 \\ & = \color{#3D99F6} \tan^{-1} \frac {1984}{1986} \\ \therefore \tan^{-1} \frac {{\color{#3D99F6}x}-1}{{\color{#3D99F6}x}+1} & = \tan^{-1} \frac {{\color{#3D99F6}1985}-1}{{\color{#3D99F6}1985}+1} \\ \implies x & = \boxed{1985} \end{aligned}

Pulkit Gupta
Apr 12, 2016

Refer to Eli Ross's briiliant solution here to a similar problem to tackle such questions much faster.

I will post a complete solution soon. Here is a brief outline.

Take arctan(1/x) to L.H.S and 3arctan(1/20) to R.H.S.

Take tan on both sides. You get a fraction in L.H.S and use the triple angle formula on R.H.S and simplify.

Then solve for x you get x=1985.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...