Center of Mass - Unbalanced Ring

Calculus Level 5

A massive circular ring of unit radius is centered on the origin within the x y xy plane. The ring parameters and mass density are given below:

x = cos ( θ ) y = sin ( θ ) 0 θ 2 π d m d θ = e θ x = \cos(\theta) \hspace{1cm} y = \sin(\theta) \hspace{1cm} 0 \leq \theta \leq \ 2 \pi \hspace{1cm} \frac{dm}{d\theta} = e^{-\theta}

How far away from the origin is the ring's center of mass (to three decimal places)?

Note: The constant e e is Euler's Number


The answer is 0.707.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankith A Das
Mar 31, 2018

This is a different approach.

We could write r C M = r d m d m \displaystyle \mathbf{r}_{CM} =\displaystyle \frac{\displaystyle \int \mathbf{r} d \mathbf{m}}{ \displaystyle \int d\mathbf{m}} The points on the ring can be written as r = e i θ \mathbf{r} = e^{i \theta} where 0 θ 2 π 0 \le \theta \le 2 \pi . Hence

r C M = 0 2 π e i θ e θ d θ 0 2 π e θ d θ \displaystyle \mathbf{r}_{CM} = \frac{\displaystyle \int_0^{2 \pi} e^{i \theta} e^{- \theta} d \theta}{\displaystyle\int_0^{2 \pi} e^{- \theta} d \theta}

r C M = 0 2 π e θ ( i 1 ) e θ 0 2 π \implies \displaystyle \mathbf{r}_{CM} = \frac{\displaystyle \int_0^{2 \pi} e^{ \theta ( i -1)}}{\displaystyle -e^{- \theta} {\huge|}_{0}^{2 \pi}}

r C M = 1 i 1 e θ ( i 1 ) 0 2 π 1 e 2 π \implies \mathbf{r}_{CM} = \displaystyle \frac{ \displaystyle \frac{1}{i -1} \displaystyle e^{\theta (i-1)} {\huge|}_0^{2 \pi}}{ 1- e^{-2 \pi } }

r C M = 1 i 1 ( e 2 π ( i 1 ) 1 ) 1 e 2 π \implies \mathbf{r}_{CM} = \displaystyle \frac{ \displaystyle \frac{1}{i -1} \left( e^{2 \pi (i -1)} - 1 \right) }{ 1- e^{-2 \pi } }

r C M = 1 i 1 ( e 2 π i e 2 π 1 ) 1 e 2 π \implies \mathbf{r}_{CM} = \displaystyle \frac{ \displaystyle \frac{1}{i -1} \left( e^{2 \pi i} e^{-2 \pi} - 1 \right) }{ 1- e^{-2 \pi } }

r C M = 1 i 1 ( e 2 π 1 ) 1 e 2 π \implies \mathbf{r}_{CM} = \displaystyle \frac{ \displaystyle \frac{1}{i -1} \left( e^{-2 \pi} - 1 \right) }{ 1- e^{-2 \pi } }

r C M = ( 1 ) i 1 \implies \mathbf{r}_{CM} = \frac{(-1)}{i-1 }

r C M = i + 1 2 \implies \mathbf{r}_{CM} = \frac{i + 1}{2}

r C M = 1 2 \| \mathbf{r}_{CM} \| = \frac{1}{\sqrt{2}}

P.S I am a little new to LaTeX \LaTeX

This was way more creative than my solution. Why didn't I think of complex numbers!

Tapas Mazumdar - 3 years, 2 months ago

Great solution sir, truely awesome

MAINAK CHAUDHURI - 3 years, 2 months ago

Never thought this way!! Awesome!

Arunava Das - 3 years, 1 month ago
Tapas Mazumdar
Mar 31, 2018

The x x and y y coordinates of the center of mass of the ring are respectively

x C M = x d m d m , y C M = y d m d m x_{CM} = \dfrac{\displaystyle \int x \,dm}{\displaystyle \int \,dm} \qquad , \qquad y_{CM} = \dfrac{\displaystyle \int y \,dm}{\displaystyle \int \,dm}

Plugging in all terms in terms of the parameter θ \theta and the limits of integral from 0 0 to 2 π 2\pi , we have

x C M = 0 2 π cos θ d m d θ d θ 0 2 π d m d θ d θ , y C M = 0 2 π sin θ d m d θ d θ 0 2 π d m d θ d θ x C M = 0 2 π cos θ e θ d θ 0 2 π e θ d θ , y C M = 0 2 π sin θ e θ d θ 0 2 π e θ d θ x C M = 1 2 e θ ( cos θ + sin θ ) 0 2 π e θ 0 2 π , y C M = 1 2 e θ ( sin θ cos θ ) 0 2 π e θ 0 2 π x C M = 1 2 , y C M = 1 2 \begin{aligned} & x_{CM} = \dfrac{\displaystyle \int_0^{2\pi} \cos \theta \dfrac{dm}{d\theta} \,d\theta}{\displaystyle \int_0^{2\pi} \dfrac{dm}{d\theta} \,d\theta} &,& y_{CM} = \dfrac{\displaystyle \int_0^{2\pi} \sin \theta \dfrac{dm}{d\theta} \,d\theta}{\displaystyle \int_0^{2\pi} \dfrac{dm}{d\theta} \,d\theta} \\ \implies & x_{CM} = \dfrac{\displaystyle \int_0^{2\pi} \cos \theta e^{-\theta} \,d\theta}{\displaystyle \int_0^{2\pi} e^{-\theta} \,d\theta} &,& y_{CM} = \dfrac{\displaystyle \int_0^{2\pi} \sin \theta e^{-\theta} \,d\theta}{\displaystyle \int_0^{2\pi} e^{-\theta} \,d\theta} \\ \implies & x_{CM} = \dfrac{1}{2} \cdot \dfrac{-e^{-\theta} (\cos\theta + \sin\theta) {\huge|}_0^{2\pi}}{-e^{-\theta} {\huge|}_0^{2\pi}} &,& y_{CM} = \dfrac{1}{2} \cdot \dfrac{e^{-\theta} (\sin\theta - \cos\theta) {\huge|}_0^{2\pi}}{-e^{-\theta} {\huge|}_0^{2\pi}} \\ \implies & x_{CM} = \dfrac12 &,& y_{CM} = \dfrac12 \end{aligned}

Required distance of center of mass from the origin is thus, r = ( x C M ) 2 + ( y C M ) 2 = 1 2 = 0.707 r = \sqrt{(x_{CM})^2 + (y_{CM})^2} = \dfrac{1}{\sqrt{2}} = \boxed{0.707} correct to 3 decimal places.

Can you please explain that how you've integrated? Is it by parts ?

Sahil Silare - 3 years, 2 months ago

Log in to reply

Yes. Intregrated by part. Btw you called me?

Tapas Mazumdar - 3 years, 2 months ago

Log in to reply

Yes, regarding that electrostatics question you posted.

Sahil Silare - 3 years, 2 months ago

Nice solution!

Md Zuhair - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...