Centroid Circle

Geometry Level 5

Let A B C ABC be a triangle, with A B = 11 AB=11 and A C = 7 AC=7 , and let D , E , G D,E,G respectively be the midpoint of the side A C AC , the midpoint of A B AB and the centroid of A B C ABC . Knowing that A , D , E , G A,D,E,G are concyclic, and that B C = n BC=\sqrt{n} , find n n .


The answer is 85.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mehul Chaturvedi
Jan 2, 2015

I tried my best to upload an easy and elegant solution

Now let B D = 3 x B G = 2 x BD=3x \therefore BG=2x and G D = x GD=x {as centroid divides median in 2 : 1 2:1 ration}

First of all as A E G D AEGD is cyclic quadrilateral

\therefore D A E = E G B \angle DAE=\angle EGB and A D G = G E B \angle ADG=\angle GEB

A B D G B E \therefore \triangle ABD \sim \triangle GBE

A B G B = B D B E = A D G E \therefore \dfrac{AB}{GB}=\dfrac{BD}{BE}=\dfrac{AD}{GE}

11 2 x = 3 x 5.5 12 x 2 = 121 \therefore \dfrac{11}{2x}=\dfrac{3x}{5.5}~\Rightarrow 12x^2=121

x 2 = 121 4 × 3 x = 11 3 6 x^2=\dfrac{121}{4 \times 3} \Rightarrow x=\dfrac{11 \sqrt 3}{6}

Means B D = 11 3 6 × 3 BD=\dfrac{11 \sqrt 3}{6} \times 3

B D = 11 3 2 \therefore BD=\dfrac{11 \sqrt 3}{2}

Now we have median formula for a triangle which states that

Length of Median on side a = 2 b 2 + 2 c 2 a 2 2 a=\dfrac { \sqrt { 2b^{ 2 }+2c^{ 2 }-a^{ 2 } } }{ 2 }

B D = 2 ( B C ) 2 + 2 ( 121 ) 49 2 \therefore BD=\dfrac { \sqrt { 2(BC)^{ 2 }+2(121)-49 } }{ 2 }

11 3 2 = 2 ( B C ) 2 + 2 ( 121 ) 49 2 121 × 3 4 = 2 ( B C ) 2 + 193 4 170 = 2 ( B C 2 ) 85 = B C 2 85 = B C \Rightarrow \dfrac { 11\sqrt { 3 } }{ 2 } =\dfrac { \sqrt { 2(BC)^{ 2 }+2(121)-49 } }{ 2 } \\ \Rightarrow \dfrac { 121\times 3 }{ 4 } =\dfrac { 2(BC)^{ 2 }+193 }{ 4 } \\ \Rightarrow 170=2(BC^{ 2 })\\ \Rightarrow 85=BC^{ 2 }\\ \Rightarrow \sqrt { 85 } =BC

n = 85 \therefore \color{royalblue}{\huge\boxed{n=85}}

Beatiful solution!

Emmanuel Lasker - 6 years, 5 months ago

Log in to reply

Thanks a lot. Must upvote it then

Mehul Chaturvedi - 6 years, 5 months ago

I didn't know the formula. But I did same like @Nihar Mahajan 's solution

Nitesh Chaudhary - 6 years, 4 months ago
Nihar Mahajan
Feb 11, 2015

Let A F = 3 x , C E = 3 y , B D = 3 z AF = 3x , CE = 3y , BD = 3z

Angles - A D E = A G E = a ADE = AGE = a

E D B = G A E = D B C = b EDB = GAE = DBC = b

D A G = D E G = c DAG = DEG = c

D G A = A B C = d DGA = ABC = d

I hope all the notation is clear from the diagram. This solution does not use median formula.

Using Ptolemy's Theorem to D G E A DGEA ,

( 11 2 ) ( z ) + ( 7 2 ) ( y ) = x n (\frac{11}{2})(z) + (\frac{7}{2})(y) = x\sqrt{n}

n = 1 2 x ( 11 z + 7 y ) . . . . ( 1 ) \Rightarrow \sqrt{n} = \frac{1}{2x}(11z + 7y) . . . .(1)

By angle chasing , in diagram by A-A test ,

Δ C D G Δ C E A 7 2 3 y = z 11 2 = 2 y 7 \Delta CDG \sim \Delta CEA \Large\Rightarrow \frac{\frac{7}{2}}{3y} = \frac{z}{\frac{11}{2}} = \frac{2y}{7}

7 6 y = 2 y 7 49 = 12 y 2 y = 7 3 6 . . . . ( 2 ) \Rightarrow \frac{7}{6y} = \frac{2y}{7} \Rightarrow 49 = 12y^2 \Rightarrow y = \frac{7\sqrt{3}}{6} . . . . (2)

By substituting value of y y from ( 2 ) (2) , we also have ,

2 y 7 = 2 z 11 1 3 = 2 z 11 z = 11 3 6 . . . . ( 3 ) \frac{2y}{7} = \frac{2z}{11} \Rightarrow \frac{1}{\sqrt{3}} = \frac{2z}{11} \Rightarrow z = \frac{11\sqrt{3}}{6} . . . . (3)

We also have Δ D G A Δ E B C \Delta DGA \sim \Delta EBC , Substituting value of z z from ( 3 ) (3) ,

z 11 2 = 2 x n = 7 2 3 y \Large\Rightarrow \frac{z}{\frac{11}{2}} = \frac{2x}{\sqrt{n}} = \frac{\frac{7}{2}}{3y}

11 3 6 × 2 11 = 2 x n \Rightarrow \frac{11 \sqrt{3}}{6} \times \frac{2}{11} = \frac{2x}{\sqrt{n}}

2 x = 3 n 3 . . . . ( 4 ) \Rightarrow 2x = \frac{\sqrt{3n}}{3} . . . . (4)

Substituting ( 4 ) (4) in ( 1 ) (1) ,

3 3 n ( 121 3 6 + 49 3 6 ) = n \frac{3}{\sqrt{3n}} \bigg( \frac{121\sqrt{3}}{6} + \frac{49\sqrt{3}}{6}\bigg) = \sqrt{n}

3 ( 170 3 6 ) = n 3 \Rightarrow 3\bigg( \frac{170\sqrt{3}}{6}\bigg) = n\sqrt{3}

n = 85 \Rightarrow \huge\boxed{n = 85}

By the way, the F F in the question should be G G . Anyway, I did the long way to come to the answer.

Let A A be ( 0 , 0 ) (0,0) , B ( 11 , 0 ) B(11,0) and C ( x , y ) x 2 + y 2 = 7 2 D ( x 2 , y 2 ) C(x,y)\quad \Rightarrow x^2+y^2 = 7^2\quad \Rightarrow D(\frac {x}{2}, \frac {y}{2}) E ( 11 2 , 0 ) G ( 11 + 0 + x 3 , 0 + 0 + y 3 ) G ( x + 11 3 , y 3 ) \quad \Rightarrow E(\frac {11}{2}, 0) \quad \Rightarrow G(\frac {11+0+x}{3}, \frac {0+0+y}{3})\Rightarrow G(\frac {x+11}{3}, \frac {y}{3}) .

Let the center and radius of the concyclic circle be O ( x o , y o ) O(x_o, y_o) and r r . Then we have the following equations.

{ x 2 + y 2 = 49 . . . ( 1 ) x o 2 + y o 2 = r 2 . . . ( 2 ) ( x o 11 2 ) 2 + y o 2 = r 2 . . . ( 3 ) ( x o x 2 ) 2 + ( y o y 2 ) 2 = r 2 . . . ( 4 ) ( x o x + 11 3 ) 2 + ( y o y 3 ) 2 = r 2 . . . ( 5 ) \begin{cases} x^2+y^2 = 49 &...(1) \\ x_o^2+y_o^2 = r^2 &...(2) \\ (x_o-\frac {11}{2})^2+y_o^2 = r^2 &...(3) \\ (x_o-\frac {x}{2})^2+(y_o-\frac {y}{2})^2 = r^2 &...(4) \\ (x_o-\frac {x+11}{3})^2+(y_o-\frac {y}{3})^2 = r^2 &...(5) \end{cases}

Eqn 3 - Eqn 2:

x o 2 11 x o + ( 11 2 ) 2 + y o 2 x o 2 y o 2 = 0 x o = 11 4 \quad \Rightarrow x_o^2 - 11x_o + (\frac {11}{2})^2 + y_o^2 - x_o^2 - y_o^2 = 0\quad \quad x_o = \frac {11}{4}

Eqn 4 - Eqn 2:

x o 2 x o x + 1 4 x 2 + y o 2 y o y + 1 4 y 2 x o 2 y o 2 = 0 \quad \Rightarrow x_o^2 - x_ox + \frac {1}{4}x^2 + y_o^2 - y_oy + \frac {1}{4}y^2 - x_o^2 - y_o^2 = 0

x o x + y o y = x 2 + y 2 4 = 49 4 . . . ( 6 ) \quad \quad x_ox + y_oy = \frac {x^2+y^2}{4} = \frac {49}{4} \quad ... (6)

Eqn 5 - Eqn 2:

( 11 4 x + 11 3 ) 2 + ( y o y 3 ) 2 ( 11 4 ) 2 y o 2 = 0 \quad \Rightarrow (\frac {11}{4}-\frac {x+11}{3})^2+(y_o-\frac {y}{3})^2 - (\frac{11}{4})^2 - y_o^2 = 0

( 11 12 x 3 ) 2 + ( y o y 3 ) 2 121 16 y o 2 = 0 \quad \quad (-\frac {11}{12}-\frac {x}{3})^2+(y_o-\frac {y}{3})^2 - \frac {121}{16} - y_o^2 = 0

121 144 + 11 18 x + 1 9 x + y o 2 2 3 y o y + 1 9 y 2 121 16 y o 2 = 0 \quad \quad \frac {121}{144}+\frac{11}{18}x+\frac{1}{9}x + y_o^2 - \frac {2}{3} y_oy + \frac {1}{9}y^2 - \frac {121}{16} - y_o^2 = 0

121 18 + 11 18 x 2 3 y o y = 0 11 6 x 2 y o y = 26 6 . . . ( 7 ) \quad \quad -\frac {121}{18}+\frac{11}{18}x- \frac {2}{3} y_oy = 0\quad \Rightarrow \frac {11}{6}x - 2y_oy = \frac {26}{6}\quad ... (7)

Eqn 6 × \times 2 + Eqn 7:

11 2 x + 2 y o y + 11 6 x 2 y o y = 49 2 + 26 6 x = 85 22 \quad \Rightarrow \frac {11}{2} x + 2y_oy + \frac {11}{6}x - 2y_oy = \frac {49}{2} + \frac {26}{6} \quad \Rightarrow x = \frac {85}{22}

Now, B C = n BC = \sqrt{n}

n = ( x 11 ) 2 + y 2 = x 2 22 x + 121 + y 2 \quad \Rightarrow n = (x-11)^2 + y^2 = x^2 - 22x + 121 + y^2

= 49 22 ( 85 22 + 121 = 85 \quad \quad \quad = 49 - 22(\frac {85}{22} + 121 = \boxed {85}

Thank you, I edited the question. Also well done, i like your brute-force solution!

Emmanuel Lasker - 6 years, 5 months ago

Coordinate,the method I like.You don't have to think much about the solution.Just examine it physically and then just brute force your way it.But,that's permit much reflection on the problem.Does it?

Anyway,nice solution Sir.

Priyatam Roy - 6 years, 4 months ago
Emmanuel Lasker
Dec 30, 2014

To solve this problem, I'll use barycentric coordinates with respect to A B C \triangle ABC , assuming B C = a BC=a , C A = b CA=b and A B = c AB=c . Note that the points A , D , E , G A,D,E,G have a very simple representation in this system of homogeneous coordinates: A = ( 1 , 0 , 0 ) D = ( 1 , 0 , 1 ) G = ( 1 , 1 , 1 ) E = ( 1 , 1 , 0 ) A=(1,0,0)\ \ \ \ D=(1,0,1)\ \ \ \ G=(1,1,1)\ \ \ \ E=(1,1,0) Recalling that the equation of a circle is a 2 y z b 2 z x c 2 x y + ( u x + v y + w z ) ( x + y + z ) = 0 -a^2yz-b^2zx-c^2xy+(ux+vy+wz)(x+y+z)=0 for some values of the parameters u , v , w u,v,w , we plug the coordinates of three points to find the equation of the circle. A ) a 2 0 0 b 2 0 1 c 2 1 0 + ( u 1 + v 0 + w 0 ) ( 1 + 0 + 0 ) = 0 u = 0 A) \ \ \ \ -a^2\cdot 0\cdot 0-b^2\cdot0\cdot1-c^2\cdot 1\cdot 0+(u\cdot 1+v\cdot 0+w\cdot0)(1+0+0)=0 \Rightarrow u=0 D ) a 2 0 1 b 2 1 1 c 2 1 0 + ( u 1 + v 0 + w 1 ) ( 1 + 0 + 1 ) = 0 b 2 + 2 ( u + w ) = 0 D)\ \ \ \ -a^2\cdot 0\cdot 1-b^2\cdot1\cdot 1-c^2\cdot1\cdot0+(u\cdot 1+v\cdot 0+w\cdot 1)(1+0+1)=0\Rightarrow -b^2+2(u+w)=0 But we already found that u = 0 u=0 , so this condition becomes w = b 2 2 w=\frac{b^2}{2} . Using symmetry, we can also find that imposing the passage through E E leads to v = c 2 2 v=\frac{c^2}{2} . So we have the equation of the circle! a 2 y z b 2 z x c 2 x y + ( c 2 2 y + b 2 2 z ) ( x + y + z ) = 0 -a^2yz-b^2zx-c^2xy+\left(\frac{c^2}{2}y+\frac{b^2}{2}z\right)(x+y+z)=0

Now we plug G = ( 1 , 1 , 1 ) G=(1,1,1) in this equation to obtain a 2 b 2 c 2 + 3 ( b 2 2 + c 2 2 ) = 0 a 2 = b 2 + c 2 2 a = b 2 + c 2 2 -a^2-b^2-c^2+3\left(\frac{b^2}{2}+\frac{c^2}{2}\right)=0\Rightarrow a^2=\frac{b^2+c^2}{2}\Rightarrow a=\sqrt{\frac{b^2+c^2}{2}} Recalling that b = 7 b=7 and c = 11 c=11 B C = a = 121 + 49 2 = 170 2 = 85 BC=a=\sqrt{\frac{121+49}{2}}=\sqrt{\frac{170}{2}}=\sqrt{85} So the answer is 85 \boxed{85} .

Sorry for my terrible English.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...