Centroid of polyhedral solid

Calculus Level pending

A solid of uniform density is bounded by the planes x = 2 , x = 1 , y = 2 z , y = 3 x , z = x , z = 0 x= -2, x = -1, y = 2 z , y = 3 x , z = -x , z= 0 . Find the y y coordinate of the center of mass of this solid. The answer can be expressed as ( p q ) (-\dfrac{p}{q}) for positive coprime integers p , q p, q , enter p + q p + q


The answer is 569.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Dec 24, 2020

Let y 0 y_0 be the y y coordinate of the centroid, then y 0 y_0 is given by the triple integral

y 0 = ( 1 V ) x = 2 1 z = 0 x y = 3 x 2 z y d y d z d x y_0 = \displaystyle \left( \dfrac{1}{V} \right) \int_{x=-2}^{-1} \int_{z = 0}^{-x} \int_{y = 3 x }^{2 z} y\hspace{4pt} dy \hspace{4pt} dz \hspace{4pt} dx

where V V is the volume and is given by V = x = 2 1 z = 0 x y = 3 x 2 z d y d z d x = 28 3 V = \displaystyle \int_{x=-2}^{-1} \int_{z = 0}^{-x} \int_{y = 3 x }^{2 z} dy \hspace{4pt} dz \hspace{4pt} dx = \dfrac{28}{3}

Integrating with respect to y y first,

y 0 = ( 3 28 ) x = 2 1 z = 0 x ( 2 z 2 9 2 x 2 ) d z d x y_0 = \displaystyle \left( \dfrac{3}{28} \right) \displaystyle \int_{x=-2}^{-1} \int_{z = 0}^{-x} (2 z^2 - \dfrac{9}{2} x^2 ) \hspace{4pt} dz \hspace{4pt} dx

Now integrating with respect to z z ,

y 0 = ( 3 28 ) x = 2 1 ( 2 3 x 3 + 9 2 x 3 ) d x = ( 3 28 ) x = 2 1 23 6 x 3 d x y_0 = \displaystyle \left( \dfrac{3}{28} \right) \displaystyle \int_{x=-2}^{-1} (- \dfrac{2}{3} x^3 + \dfrac{9}{2} x^3 ) \hspace{4pt} dx = \left( \dfrac{3}{28} \right) \displaystyle \int_{x=-2}^{-1} \dfrac{23}{6} x^3 \hspace{4pt} dx

Finally, integrating with respect to x x

y 0 = ( 3 28 ) ( 23 6 ) ( 1 4 ) ( ( 1 ) 4 ( 2 ) 4 ) = ( 23 56 ) ( 15 4 ) = 345 224 y_0 = \displaystyle \left( \dfrac{3}{28} \right) \left( \dfrac{23}{6} \right)\displaystyle \left( \dfrac{1}{4} \right) ( (-1)^4 - (-2)^4 ) = \left( \dfrac{23}{56} \right ) \left( - \dfrac{15}{4} \right) = - \dfrac{ 345 }{224}

Therefore, the answer is 345 + 224 = 569 345 + 224 = \boxed{569}

Gediminas Sadzius
Dec 23, 2020

Moment of the solid about the xz-plane, where ρ \rho is the uniform density:

M xz = 2 1 x 0 2 z 3 x ρ y d y d z d x M_{\text{xz}}=\int _{-2}^{-1}\int _{-x}^0\int _{2 z}^{3 x}\rho ydydzdx

Mass of the solid:

m = 2 1 x 0 2 z 3 x ρ d y d z d x m=\int _{-2}^{-1}\int _{-x}^0\int _{2 z}^{3 x}\rho dydzdx

The y-coordinate of the centre of mass of the solid:

y = M xz m y=\frac{M_{\text{xz}}}{m}

Plugging in the numbers: y = 345 224 y=-\frac{345}{224} , and the answer is 345+224= 569 \boxed{569}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...