Cevius Maximus

Geometry Level 4

P P is an arbitrary point in A B C \triangle ABC which is used to construct a cevian triangle , A B C \triangle A'B'C' . Find the maximum ratio, A B C A B C \dfrac{\triangle A'B'C'}{\triangle ABC} , express it as p q \dfrac{p}{q} , where p p and q q are coprime integers, and submit p + q p+q .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Feb 16, 2021

Since stretching a triangle preserves ratios of areas, stretch the triangle so that the vertices are at A ( 0 , 0 ) A(0, 0) , B ( 12 , 0 ) B(12, 0) , C ( 0 , 12 ) C(0, 12) , and P ( p , q ) P(p, q) .

A A AA' has the equation y = q p x y = \cfrac{q}{p}x , and intersects B C BC or y = 12 x y = 12 - x at A ( 12 p p + q , 12 q p + q ) A'\bigg(\cfrac{12p}{p + q}, \cfrac{12q}{p + q}\bigg) .

B B BB' has the equation y = q p 12 ( x 12 ) y = \cfrac{q}{p - 12}(x - 12) , and has a y y -intercept of B ( 0 , 12 q 12 p ) B'\bigg(0, \cfrac{12q}{12 - p}\bigg) .

C C CC' has the equation y = q 12 p x + 12 y = \cfrac{q - 12}{p}x + 12 , and has an x x -intercept of C ( 12 p 12 q , 0 ) C'\bigg(\cfrac{12p}{12 - q}, 0\bigg) .

A B = ( 12 p p + q , 12 q 12 p 12 q p + q ) \overrightarrow{A'B'} = \bigg(-\cfrac{12p}{p + q}, \cfrac{12q}{12 - p} - \cfrac{12q}{p + q}\bigg) and A C = ( 12 q 12 q 12 p p + q , 12 q p + q ) \overrightarrow{A'C'} = \bigg(\cfrac{12q}{12 - q} - \cfrac{12p}{p + q}, -\cfrac{12q}{p + q}\bigg) .

The area of A B C \triangle A'B'C' is A A B C = 1 2 A B x A C y A B y A C x = 144 p q ( 12 p q ) ( 12 p ) ( 12 q ) ( p + q ) A_{\triangle A'B'C'} = \cfrac{1}{2}|\overrightarrow{A'B'}_x \cdot \overrightarrow{A'C'}_y - \overrightarrow{A'B'}_y \cdot \overrightarrow{A'C'}_x| = \cfrac{144pq(12 - p - q)}{(12 - p)(12 - q)(p + q)} .

The maximum area of A B C \triangle A'B'C' occurs when d A A B C d p = 1728 q 2 ( 12 2 p q ) ( 12 p ) 2 ( 12 q ) ( p + q ) 2 = 0 \cfrac{dA_{\triangle A'B'C'}}{dp} = \cfrac{1728q^2(12 - 2p - q)}{(12 - p)^2(12 - q)(p + q)^2} = 0 and d A A B C d q = 1728 p 2 ( 12 p 2 q ) ( 12 p ) ( 12 q ) 2 ( p + q ) 2 = 0 \cfrac{dA_{\triangle A'B'C'}}{dq} = \cfrac{1728p^2(12 - p - 2q)}{(12 - p)(12 - q)^2(p + q)^2} = 0 .

For p 0 p \neq 0 and q 0 q \neq 0 , this means that 12 2 p q = 0 12 - 2p - q = 0 and 12 p 2 q = 0 12 - p - 2q = 0 , which solves to p = q = 4 p = q = 4 (the centroid) and makes the maximum area A A B C max = 144 4 4 ( 12 4 4 ) ( 12 4 ) ( 12 4 ) ( 4 + 4 ) = 18 A_{\triangle A'B'C' \text{ max}} = \cfrac{144 \cdot 4 \cdot 4 \cdot (12 - 4 - 4)}{(12 - 4)(12 - 4)(4 + 4)} = 18 .

Therefore, since the area of A B C \triangle ABC is A A B C = 1 2 12 12 = 72 A_{\triangle ABC} = \cfrac{1}{2} \cdot 12 \cdot 12 = 72 , the maximum ratio is A A B C max A A B C = 18 72 = 1 4 \cfrac{A_{\triangle A'B'C' \text{ max}}}{A_{\triangle ABC}} = \cfrac{18}{72} = \cfrac{1}{4} , so p = 1 p = 1 , q = 4 q = 4 , and p + q = 5 p + q = \boxed{5} .

Great solution !

Valentin Duringer - 3 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...