Chain Reaction

Algebra Level 3

log 2 ( ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) = ? \log _{ 2 }{ ((2+1)({ 2 }^{ 2 }+1)({ 2 }^{ 4 }+1)({ 2 }^{ 8 }+1)({ 2 }^{ 16 }+1)({ 2 }^{ 32 }+1)+1) } = ?


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
Apr 8, 2015

log 2 ( ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) \log_2((2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)+1)

= log 2 ( ( 2 1 ) ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) =\log_2((2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)+1)

= log 2 ( ( 2 2 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) =\log_2((2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)+1)

= log 2 ( ( 2 4 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) =\log_2((2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)+1)

= log 2 ( ( 2 8 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) =\log_2((2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)+1)

= log 2 ( ( 2 16 1 ) ( 2 16 + 1 ) ( 2 32 + 1 ) + 1 ) =\log_2((2^{16}-1)(2^{16}+1)(2^{32}+1)+1)

= log 2 ( ( 2 32 1 ) ( 2 32 + 1 ) + 1 ) =\log_2((2^{32}-1)(2^{32}+1)+1)

= log 2 ( 2 64 1 + 1 ) =\log_2(2^{64}-1+1)

= 64 . =\boxed{64}.

Isn't this question the same as this one ? :)

Nihar Mahajan - 6 years, 2 months ago

Log in to reply

You put the same comment on both the answers xD

Omkar Kulkarni - 6 years, 2 months ago

Log in to reply

Yeah you noticed it ... xD

Nihar Mahajan - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...