Chain Reaction 1!

Calculus Level 5

f ( x , y ) = { lim n ( x n + y n ) 1 / n if x > y lim n ( x n + y n ) 1 / n if y > x f(x,y) = \begin{cases}\displaystyle \lim_{n\to \infty}\left(\lfloor x\rfloor^n+ y ^n\right)^{1/n} & \text{if }x>y\\\displaystyle \lim_{n\to \infty}\left(x^n+ \lfloor y\rfloor^n \right)^{1/n} & \text{if }y>x \end{cases}

g ( a , b ) = { lim x a + y b f ( x , y ) if x > y lim x a y b + f ( x , y ) if y > x g(a,b) = \begin{cases}\displaystyle \lim_{x\to a^+\atop y\to b} f(x,y) & \text{if }x>y\\\displaystyle \lim_{x\to a\atop y\to b^+} f(x,y) & \text{if }y>x \end{cases}

h ( x , m ) = { 0 if x < m ( m 1 ) m ( m + 1 ) 3 m 1 m 2 if x m h(x,m) = \begin{cases} 0 & \text{if } x<\lfloor m\rfloor\\\dfrac{(\lfloor m\rfloor-1)\lfloor m\rfloor(\lfloor m\rfloor+1)}3-\lfloor m-1\rfloor\lfloor m\rfloor^2& \text{if } x\ge\lfloor m\rfloor\end{cases}

j ( n , m ) = 1 h ( 1 , m ) + g ( 1 , m ) g ( 2 , m ) + 1 h ( 2 , m ) + g ( 1 , m ) g ( 2 , m ) + g ( 2 , m ) g ( 3 , m ) + 1 h ( 3 , m ) + g ( 1 , m ) g ( 2 , m ) + g ( 2 , m ) g ( 3 , m ) + g ( 3 , m ) g ( 4 , m ) + ( n terms ) \begin{aligned} j(n, m) = &\dfrac1{h(1,m) + g(1,m)\cdot g(2,m)}\\ & \ \ \ \ \ +\dfrac1{h(2,m)+g(1,m)\cdot g(2,m)+ g(2,m)\cdot g(3,m)}\\ & \ \ \ \ \ \ \ \ \ \ +\dfrac1{h(3,m)+g(1,m)\cdot g(2,m)+ g(2,m)\cdot g(3,m)+ g(3,m)\cdot g(4,m)} \\\\ & \qquad{}\ \ \ \ \ \ \ +\cdots (n \text{ terms }) \end{aligned}

Let the 4 functions f ( x , y ) f(x,y) , g ( a , b ) g(a,b) , h ( x , m ) h(x,m) and j ( n , m ) j(n,m) be defined as shown above.

Find lim x y e j ( x , y ) \displaystyle \lim_{x\to\infty\atop y\to e} j(x,y) .


Check out Chain Reaction 2!


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
Mar 20, 2016

Let's look what f ( x , y ) f(x, y) is. f ( x , y ) = lim n ( x n + y n ) 1 n for x > y x y = L ( say ) ln L = 1 n ln ( x n + y n ) = 1 n ln ( x n ( 1 + ( y x ) n ) ) = 1 n [ n ln x + ln ( 1 + ( y x ) n ) ] ( y x ) < 1 ( y x ) = 0 = ln x L = x \begin{aligned}f(x,y) &= \lim_{n\to\infty}\left(\lfloor x\rfloor^n + y^n\right)^{\frac 1n} \text{ for } x>y\Rightarrow \lfloor x\rfloor\ge y\\&= L(\text{say})\\\ln L& = \dfrac1n\ln\left(\lfloor x\rfloor^n + y^n\right)\\&= \dfrac1n\ln\left(\lfloor x\rfloor^n\left( 1+ \left(\dfrac y{\lfloor x\rfloor}\right)^n\right)\right)\\&= \dfrac1n\left[n\ln\lfloor x\rfloor + \ln\left( 1+ \left(\dfrac y{\lfloor x\rfloor}\right)^n\right)\right]&\color{#3D99F6}{ \left(\dfrac y{\lfloor x\rfloor}\right) < 1 \Rightarrow \left(\dfrac y{\lfloor x\rfloor}\right)^\infty = 0}\\&= \ln \lfloor x\rfloor \\\Rightarrow L &= \lfloor x\rfloor \end{aligned}

So that, we can take g ( x , y ) = f ( x , y ) = max ( x , y ) g(x, y) = f(x,y) = \max\left(\lfloor x\rfloor ,\lfloor y\rfloor\right)

Given m = e m = 2 m = e\Rightarrow\lfloor m\rfloor = 2

( m 1 ) m ( m + 1 ) 3 = 2 \dfrac{(\lfloor m\rfloor-1)\lfloor m\rfloor(\lfloor m\rfloor+1)}3 = 2 lim n j ( n , e ) = 1 2 2 + 1 1 2 + 2 3 + 1 1 2 + 2 3 + 3 4 + = lim n 1 4 + s = 2 n 1 r = 1 s r ( r + 1 ) = lim n 1 4 + 3 s = 2 n 1 s ( s + 1 ) ( s + 2 ) = lim n 1 4 + 3 2 ( 1 2 3 1 n ( n + 1 ) ) = 1 2 = 0.5 \begin{aligned}\lim_{n\to \infty} j(n, e) &= \dfrac1{2\cdot2} + \dfrac1{1\cdot2+2\cdot 3} + \dfrac1{1\cdot2+2\cdot 3+3\cdot 4} + \cdots \\ &=\lim_{n\to \infty}\dfrac14+\sum_{s=2}^n \dfrac1{\displaystyle\sum_{r=1}^sr(r+1)}\\ &=\lim_{n\to \infty}\dfrac14+3\sum_{s=2}^n\dfrac1{s(s+1)(s+2)}\\ &= \lim_{n\to \infty}\dfrac14 + \dfrac32\cdot\left(\dfrac1{2\cdot3} - \dfrac1{n(n+1)}\right)\\ &= \dfrac12 = \boxed{0.5}\end{aligned}

wrong solution, see the report section

Aman Rajput - 1 month ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...