Chain Rule

Calculus Level 4

Functions f f and g g are such that: f ( x , y ) = g ( u , v ) \large f(x,y)=g(u,v) where u = x + y x y u=\dfrac{x+y}{xy} and v = x y x y v=\dfrac{x-y}{xy} . Find the value of: x 2 f x + y 2 f y + 2 g u \large x^2\frac{\partial f}{\partial x}+y^2\frac{\partial f}{\partial y}+2\frac{\partial g}{\partial u}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using chain rule we have: f x = g u u x + g v v x = g u x ( x + y x y ) + g v g x ( x y x y ) = g u 1 x 2 + g v 1 x 2 \frac{\partial f}{\partial x}=\frac{\partial g}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial g}{\partial v}\cdot \frac{\partial v}{\partial x}=\frac{\partial g}{\partial u}\cdot \frac{\partial}{\partial x}(\frac{x+y}{xy})+\frac{\partial g}{\partial v} \cdot \frac{\partial g}{\partial x}(\frac{x-y}{xy})=\frac{\partial g}{\partial u}\cdot \frac{-1}{x^2} +\frac{\partial g}{\partial v} \cdot \frac{-1}{x^2} The same way: f y = g u 1 y 2 + g v 1 y 2 \frac{\partial f}{\partial y}=\frac{\partial g}{\partial u} \cdot \frac{-1}{y^2}+\frac{\partial g}{\partial v} \cdot \frac{1}{y^2} So we can replace: x 2 f x + y 2 f y + 2 g u = g u g v g u + g v + 2 g u = 0 x^2\frac{\partial f}{\partial x}+y^2\frac{\partial f}{\partial y}+2\frac{\partial g}{\partial u} =-\frac{\partial g}{\partial u}-\frac{\partial g}{\partial v}-\frac{\partial g}{\partial u}+\frac{\partial g}{\partial v}+2\frac{\partial g}{\partial u}=0

X = x 2 f x + y 2 f y + 2 g u = x 2 ( g u u x + g v v x ) + y 2 ( g u u y + g v v y ) + 2 g u = x 2 ( g u x ( 1 y + 1 x ) + g v x ( 1 y 1 x ) ) + y 2 ( g u y ( 1 y + 1 x ) + g v y ( 1 y 1 x ) ) + 2 g u = x 2 ( g u ( 1 x 2 ) + g v ( 1 x 2 ) ) + y 2 ( g u ( 1 y 2 ) + g v ( 1 y 2 ) ) + 2 g u = g u + g v g u g v + 2 g u = 0 \begin{aligned} X & = x^2 \frac {\partial f}{\partial x} + y^2 \frac {\partial f}{\partial y} + 2 \frac {\partial g}{\partial u} \\ & = x^2 \left(\frac {\partial g}{\partial u} \cdot \frac {\partial u}{\partial x} + \frac {\partial g}{\partial v} \cdot \frac {\partial v}{\partial x} \right) + y^2 \left(\frac {\partial g}{\partial u} \cdot \frac {\partial u}{\partial y} + \frac {\partial g}{\partial v} \cdot \frac {\partial v}{\partial y} \right) + 2 \frac {\partial g}{\partial u} \\ & = x^2 \left(\frac {\partial g}{\partial u} \cdot \frac {\partial}{\partial x}\left(\frac 1y+\frac 1x\right) + \frac {\partial g}{\partial v} \cdot \frac {\partial}{\partial x}\left(\frac 1y-\frac 1x\right) \right) + y^2 \left(\frac {\partial g}{\partial u} \cdot \frac {\partial}{\partial y}\left(\frac 1y+\frac 1x\right) + \frac {\partial g}{\partial v} \cdot \frac {\partial}{\partial y}\left(\frac 1y-\frac 1x\right) \right) + 2 \frac {\partial g}{\partial u} \\ & = x^2 \left(\frac {\partial g}{\partial u} \left(-\frac 1{x^2} \right) + \frac {\partial g}{\partial v} \left(\frac 1{x^2}\right) \right) + y^2 \left(\frac {\partial g}{\partial u} \left(-\frac 1{y^2}\right) + \frac {\partial g}{\partial v} \left(-\frac 1{y^2}\right) \right) + 2 \frac {\partial g}{\partial u} \\ & = - \frac {\partial g}{\partial u} + \frac {\partial g}{\partial v} - \frac {\partial g}{\partial u} - \frac {\partial g}{\partial v} + 2 \frac {\partial g}{\partial u} \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...