Challenge your limit

Calculus Level 3

Find lim n 1 1 2 + 2 1 2 + . . . + n 1 2 n 3 2 \lim_{n\to\infty}\frac{1^{\frac{1}{2}}+2^{\frac{1}{2}}+...+n^{\frac{1}{2}}}{n^{\frac{3}{2}}}


The answer is 0.666666666666666667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 26, 2018

L = lim n 1 n 3 2 k = 1 n k 1 2 = lim n 1 n k = 1 n ( k n ) 1 2 By Riemann’s sums: = 0 1 x 1 2 d x lim n 1 n k = a b f ( k n ) = lim n a n b n f ( x ) d x = 2 3 x 3 2 0 1 = 2 3 0.667 \begin{aligned} L &= \lim_{n \to \infty} \frac 1{n^\frac 32} \sum_{k=1}^n k^\frac 12 \\ &= \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \left(\frac kn\right)^\frac 12 & \small \color{#3D99F6} \text{By Riemann's sums:} \\ &= \int_0^1 x^\frac 12 dx & \small \color{#3D99F6} \lim_{n \to \infty} \frac 1n \sum_{k=a}^b f \left(\frac kn\right) = \lim_{n \to \infty} \int_\frac an^\frac bn f(x) \ dx \\ &= \frac 23 x^\frac 32 \bigg|_0^1 \\ & = \frac 23 \approx \boxed{0.667} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...