Challenging Geometry Reasoning

Geometry Level 2

In the diagram above, A B C D \overline{ABCD} is a square. B D \overline{BD} is the angle bisector of A B C \angle ABC and B E \overline{BE} is the angle bisector of D B C \angle DBC .

Find E C \overline{EC} in terms of D E \overline{DE} .

E C = D E \overline{EC}= \overline{DE} E C = 3 2 D E \overline{EC}= \frac{\sqrt{3}}{2} \overline{DE} E C = 2 D E \overline{EC}= 2 \overline{DE} E C = 2 2 D E \overline{EC} = \frac{\sqrt{2}}{2} \overline{DE}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mohammad Al Ali
May 25, 2014

In B D E \triangle BDE , B D E = 4 5 \angle BDE = 45^{\circ} since B D \overline{BD } is the angle bisecting line.

Using sine rule,

D E sin 22.5 = B E sin 45 (1) \frac{DE}{\sin 22.5} = \frac{BE}{\sin 45} \tag{1}


In B E C \triangle BEC , B C E = 9 0 \angle BCE = 90^{\circ} as it is the squares edge. (square property).

Using the sine rule here we obtain,

E C sin 22.5 = B E (2) \frac{EC}{\sin 22.5} = BE \tag{2}


Letting B E BE subject in ( 1 ) (1) and ( 2 ) (2) we attain,

B E = sin 45 D E sin 22.5 (1) BE = \frac{ \sin 45 DE}{\sin 22.5} \tag{1} B E = E C sin 22.5 (2) BE = \frac{EC}{\sin 22.5} \tag{2}

Thus BE = BE and we attain,

sin 45 D E sin 22.5 = E C sin 22.5 \frac{ \sin 45 DE}{\sin 22.5} = \frac{EC}{\sin 22.5}

Multiplying both sides by sin 22.5 \sin 22.5 we obtain, ( note that sin 45 \sin 45 = 2 2 \frac{\sqrt{2}}{2} ).

E C = 2 2 D E \boxed{\overline{EC} = \frac{\sqrt{2}}{2} \overline{DE}}

You can apply the angle bisector theorem directly, to see that

E C D E = B C B D = 1 2 . \frac{ EC}{DE} = \frac{BC}{BD} = \frac{ 1}{ \sqrt{2} } .

Calvin Lin Staff - 7 years ago

Nice solution

Mardokay Mosazghi - 7 years ago

LOL i used trigonometry and derive tan22.5° by formula trignometric functions....

rishabh singhal - 7 years ago

[invalid file: https://d18l82el6cdm1i.cloudfront.net/uploads/GbJrKlf6XI-zxc.png]

Michael Mendrin
Nov 4, 2016

Find point F on line BD such that it forms a right triangle DFE. The rest follows, as FE = EC.

tan 22.5 = sqrt(2)-1 Thus, tan22.5= EC/BC Thus, BC = EC/(sqrt(2)-1) Also, tan 45 =1 and thus, DC = BC = DE + EC Thus, DE+EC = EC/(sqrt(2)-1) Thus sqrt(2)DE - DE + sqrt(2)EC-EC=EC. Thus, sqrt(2)EC(sqrt(2)-1)=DE(sqrt(2)-1). Thus, EC=1/sqrt(2) DE = sqrt(2)/2 DE

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...