Solve the integral above. If your answer is in the form of then input your answer as .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 0 1 ln ( 1 − x + 1 + x ) d x = x ln ( 1 − x + 1 + x ) ∣ ∣ ∣ ∣ 0 1 − ∫ 0 1 1 − x + 1 + x 2 x ( 1 − x − 1 + 1 + x 1 ) d x = 2 ln 2 − ∫ 0 1 2 1 − x 2 ( 1 − x + 1 + x ) x ( 1 − x − 1 + x ) d x = 2 ln 2 − ∫ 0 1 2 1 − x 2 ( 1 − x − 1 − x ) x ( 1 − x − 1 + x ) 2 d x = 2 ln 2 + 2 1 ∫ 0 1 1 − x 2 1 − 1 − x 2 d x = 2 1 ( ln 2 + ∫ 0 1 1 − x 2 1 d x − ∫ 0 1 d x ) = 2 1 ( ln 2 + ∫ 0 2 π d θ − 1 ) = 2 1 ( ln 2 + 2 π − 1 ) By integration by parts Let x = sin θ ⟹ d x = cos θ d θ
Therefore, a + b + c = 2 + 2 − 1 = 3 .