Challenging In-tegral

Calculus Level 4

0 1 ln ( 1 x + 1 + x ) d x \large \int_0^1\ln \left(\sqrt{1-x}+\sqrt{1+x}\right)\ dx

Solve the integral above. If your answer is in the form of 1 2 ( ln ( a ) + π b + c ) \dfrac{1}{2}\left(\ln(a)+\dfrac{\pi}{b}+c\right) then input your answer as a + b + c a+b+c .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 12, 2018

I = 0 1 ln ( 1 x + 1 + x ) d x By integration by parts = x ln ( 1 x + 1 + x ) 0 1 0 1 x 2 ( 1 1 x + 1 1 + x ) 1 x + 1 + x d x = ln 2 2 0 1 x ( 1 x 1 + x ) 2 1 x 2 ( 1 x + 1 + x ) d x = ln 2 2 0 1 x ( 1 x 1 + x ) 2 2 1 x 2 ( 1 x 1 x ) d x = ln 2 2 + 1 2 0 1 1 1 x 2 1 x 2 d x = 1 2 ( ln 2 + 0 1 1 1 x 2 d x 0 1 d x ) Let x = sin θ d x = cos θ d θ = 1 2 ( ln 2 + 0 π 2 d θ 1 ) = 1 2 ( ln 2 + π 2 1 ) \begin{aligned} I & = \int_0^1 \ln\left(\sqrt{1-x}+\sqrt{1+x}\right)\ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = x\ln\left(\sqrt{1-x}+\sqrt{1+x}\right)\ \bigg|_0^1 - \int_0^1 \frac {\frac x2\left(\frac {-1}{\sqrt{1-x}}+\frac 1{\sqrt{1+x}}\right)}{\sqrt{1-x}+\sqrt{1+x}}dx \\ & = \frac {\ln 2}2 - \int_0^1 \frac {x\left(\sqrt{1-x}-\sqrt{1+x}\right)}{2\sqrt{1-x^2}\left(\sqrt{1-x}+\sqrt{1+x}\right)} dx \\ & = \frac {\ln 2}2 - \int_0^1 \frac {x\left(\sqrt{1-x}-\sqrt{1+x}\right)^2}{2\sqrt{1-x^2}\left(1-x-1-x\right)} dx \\ & = \frac {\ln 2}2 + \frac 12 \int_0^1 \frac {1-\sqrt{1-x^2}}{\sqrt{1-x^2}} dx \\ & = \frac 12 \left(\ln 2 + {\color{#3D99F6}\int_0^1 \frac 1{\sqrt{1-x^2}} dx} - \int_0^1 dx \right) & \small \color{#3D99F6} \text{Let }x = \sin \theta \implies dx = \cos \theta \ d\theta \\ & = \frac 12 \left(\ln 2 + {\color{#3D99F6}\int_0^\frac \pi 2 d\theta} - 1 \right) \\ & = \frac 12 \left(\ln 2 + \frac \pi 2 - 1 \right) \end{aligned}

Therefore, a + b + c = 2 + 2 1 = 3 a+b+c = 2+2-1=\boxed 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...