Evaluate the integral ∫ − π / 2 π / 2 e 1 / x + 1 cos x d x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
i used Feynman's integration trick
Any function f ( x ) can be expressed as f ( x ) = f e ( x ) + f o ( x ) , where f e and f o are even and odd functions respectively.
To see this, note that:
f e ( x ) = 2 f ( x ) + f ( − x ) is even, f o ( x ) = 2 f ( x ) − f ( − x ) is odd, and f ( x ) = f e ( x ) + f o ( x ) .
Let f ( x ) = e 1 / x + 1 cos x so that
∫ − π / 2 π / 2 e 1 / x + 1 cos x d x = ∫ − π / 2 π / 2 f e ( x ) d x + ∫ − π / 2 π / 2 f o ( x ) d x
Since f o is odd, ∫ − π / 2 π / 2 f o ( x ) d x = 0 . Furthermore,
f e ( x ) = 2 1 ( e 1 / x + 1 cos x + e − 1 / x + 1 cos ( − x ) ) = 2 cos x ( 1 + e 1 / x + e − 1 / x + 1 e − 1 / x + 1 + e 1 / x + 1 ) = 2 cos x
∫ − π / 2 π / 2 e 1 / x + 1 cos x d x = ∫ − π / 2 π / 2 2 cos x d x = 2 sin x ∣ ∣ ∣ − π / 2 π / 2 = 1
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Integration Tricks
Similar solution as @Jam M's
I = ∫ − 2 π 2 π e x 1 + 1 cos x d x = 2 1 ∫ − 2 π 2 π ( e x 1 + 1 cos x + e − x 1 + 1 cos ( − x ) ) d x = 2 1 ∫ − 2 π 2 π cos x ( e x 1 + 1 1 + 1 + e x 1 e x 1 ) d x = 2 1 ∫ − 2 π 2 π cos x d x = 2 sin x ∣ ∣ ∣ ∣ − 2 π 2 π = 1 Using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x Note that cos ( − θ ) = cos θ