Challenging Integral

Calculus Level 3

Evaluate the integral π / 2 π / 2 cos x e 1 / x + 1 d x \displaystyle{\int_{-\pi/2}^{\pi/2} \dfrac{\cos x}{e^{1/x} + 1} dx} .

1 -1 1 1 π \pi π -\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 13, 2018

Relevant wiki: Integration Tricks

Similar solution as @Jam M's

I = π 2 π 2 cos x e 1 x + 1 d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 π 2 π 2 ( cos x e 1 x + 1 + cos ( x ) e 1 x + 1 ) d x Note that cos ( θ ) = cos θ = 1 2 π 2 π 2 cos x ( 1 e 1 x + 1 + e 1 x 1 + e 1 x ) d x = 1 2 π 2 π 2 cos x d x = sin x 2 π 2 π 2 = 1 \begin{aligned} I & = \int_{-\frac \pi 2}^\frac \pi 2 \frac {\cos x}{e^\frac 1x + 1}dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 \left(\frac {\cos x}{e^\frac 1x + 1} + \frac {\color{#3D99F6} \cos (-x)}{e^{-\frac 1x} + 1} \right) dx & \small \color{#3D99F6} \text{Note that }\cos (-\theta) = \cos \theta \\ & = \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 \cos x \left(\frac 1{e^\frac 1x + 1} + \frac {e^\frac 1x}{1 + e^\frac 1x} \right) dx \\ & = \frac 12 \int_{-\frac \pi 2}^\frac \pi 2 \cos x \ dx \\ & = \frac {\sin x}2 \bigg|_{-\frac \pi 2}^\frac \pi 2 \\ & = \boxed 1 \end{aligned}

i used Feynman's integration trick

Nahom Assefa - 2 years, 6 months ago
Jam M
Nov 12, 2018

Any function f ( x ) f(x) can be expressed as f ( x ) = f e ( x ) + f o ( x ) f(x) = f_e(x) + f_o(x) , where f e f_e and f o f_o are even and odd functions respectively.

To see this, note that:

f e ( x ) = f ( x ) + f ( x ) 2 f_e(x) = \dfrac{f(x) + f(-x)}{2} is even, f o ( x ) = f ( x ) f ( x ) 2 f_o(x) = \dfrac{f(x) - f(-x)}{2} is odd, and f ( x ) = f e ( x ) + f o ( x ) f(x) = f_e(x) + f_o(x) .

Let f ( x ) = cos x e 1 / x + 1 f(x) = \dfrac{\cos x}{e^{1/x} + 1} so that

π / 2 π / 2 cos x e 1 / x + 1 d x = π / 2 π / 2 f e ( x ) d x + π / 2 π / 2 f o ( x ) d x \displaystyle{\int_{-\pi/2}^{\pi/2} \dfrac{\cos x}{e^{1/x} + 1} dx} = \displaystyle{\int_{-\pi/2}^{\pi/2} f_e(x) dx} + \displaystyle{\int_{-\pi/2}^{\pi/2} f_o(x) dx}

Since f o f_o is odd, π / 2 π / 2 f o ( x ) d x = 0 \displaystyle{\int_{-\pi/2}^{\pi/2} f_o(x) dx} = 0 . Furthermore,

f e ( x ) = 1 2 ( cos x e 1 / x + 1 + cos ( x ) e 1 / x + 1 ) = cos x 2 ( e 1 / x + 1 + e 1 / x + 1 1 + e 1 / x + e 1 / x + 1 ) = cos x 2 f_e(x) = \dfrac{1}{2} \left( \dfrac{\cos x}{e^{1/x} + 1} + \dfrac{\cos(-x)}{e^{-1/x} + 1} \right) = \dfrac{\cos x}{2} \left( \dfrac{e^{-1/x} + 1 + e^{1/x} + 1}{1 + e^{1/x} + e^{-1/x} + 1} \right) = \dfrac{\cos x}{2}

π / 2 π / 2 cos x e 1 / x + 1 d x = π / 2 π / 2 cos x 2 d x = sin x 2 π / 2 π / 2 = 1 \displaystyle{\int_{-\pi/2}^{\pi/2} \dfrac{\cos x}{e^{1/x} + 1} dx} = \displaystyle{\int_{-\pi/2}^{\pi/2} \dfrac{\cos x}{2} dx} = \dfrac{\sin x}{2} \Big|_{-\pi/2}^{\pi/2} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...