n = 1 ∑ ∞ [ H n ( 2 ) ( n 2 1 − ( n + 1 ) 2 1 ) ]
If the value of the series above is in the form of B π A , where A and B are integers, find A + B .
Notation : H n ( m ) denotes the generalized harmonic number, H n ( m ) = k = 1 ∑ n k m 1 .
Inspirations: First link , Second link .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice way of using both the summations together!
S = n = 1 ∑ ∞ [ H n ( 2 ) ( n 2 1 − ( n + 1 ) 2 1 ) ] = n = 1 ∑ ∞ n 2 H n ( 2 ) − n = 1 ∑ ∞ ( n + 1 ) 2 H n ( 2 ) Check Inspiration 1 and Inspiration 2 = n ≥ m ≥ 1 ∑ m 2 n 2 1 − n > m ≥ 1 ∑ m 2 n 2 1 = n = m ∑ m 2 n 2 1 = n = 1 ∑ ∞ n 4 1 = ζ ( 4 ) = 9 0 π 4
⟹ A + B = 4 + 9 0 = 9 4
Inspirations for the solution are from:
Problem Loading...
Note Loading...
Set Loading...
First
∑ n = 1 ∞ H n ( 2 ) ( n 2 1 − ( n + 1 ) 2 1 ) = ∑ n = 1 ∞ n 2 H n ( 2 ) − ( n + 1 ) 2 H n ( 2 )
then we will try to make it a telescoping series.
∑ n = 1 ∞ n 2 H n ( 2 ) − ( n + 1 ) 2 H n ( 2 ) = ∑ n = 1 ∞ n 2 H n ( 2 ) − ( n + 1 ) 2 H n ( 2 ) + ( n + 1 ) 2 1 + ( n + 1 ) 2 ( n + 1 ) 2 1 ]
By definition
H n ( 2 ) + ( n + 1 ) 2 1 = H n + 1 ( 2 )
so,
∑ n = 1 ∞ n 2 H n ( 2 ) − ( n + 1 ) 2 H n + 1 ( 2 ) + ( n + 1 ) 2 ( n + 1 ) 2 1
∑ n = 1 ∞ n 2 H n ( 2 ) − ( n + 1 ) 2 H n + 1 ( 2 ) + ( n + 1 ) 2 ( n + 1 ) 2 1 = ∑ n = 1 ∞ n 2 H n ( 2 ) − ∑ n = 1 ∞ ( n + 1 ) 2 H n + 1 ( 2 ) + ∑ n = 1 ∞ ( n + 1 ) 2 ( n + 1 ) 2 1
∑ n = 1 ∞ n 2 H n ( 2 ) − ∑ n = 1 ∞ ( n + 1 ) 2 H n + 1 ( 2 ) + ∑ n = 1 ∞ ( n + 1 ) 2 ( n + 1 ) 2 1 = ∑ n = 1 ∞ n 2 H n ( 2 ) − ∑ n = 1 ∞ ( n + 1 ) 2 H n + 1 ( 2 ) + ∑ n = 1 ∞ ( n + 1 ) 4 1
∑ n = 1 ∞ n 2 H n ( 2 ) − ∑ n = 1 ∞ ( n + 1 ) 2 H n + 1 ( 2 ) is a telescoping series,
∑ n = 1 ∞ n 2 H n ( 2 ) − ∑ n = 2 ∞ n 2 H n ( 2 )
so ∑ n = 1 1 n 2 H n ( 2 ) = 1
1 + ∑ n = 1 ∞ ( n + 1 ) 4 1 = 1 + ∑ n = 1 ∞ n 4 1 − 1
1 + ∑ n = 1 ∞ n 4 1 − 1 = 1 + ζ ( 4 ) − 1
1 + ζ ( 4 ) − 1 = ζ ( 4 ) = 9 0 π 4
so 4 + 9 0 = 9 4