Change in Harmony

Calculus Level 5

n = 1 H n ( 2 ) ( n + 1 ) 2 = π A B \sum _{ n=1 }^{ \infty }{ \dfrac { { H }_{ n }^{ \left( 2 \right) } }{ { \left( n+1 \right) }^{ 2 } } } =\dfrac { { \pi }^{ A } }{ B }

If the equation above holds true for positive integers A A and B B , find A + B . A+B.

Notation : H n ( m ) H_n^{(m)} denotes the generalized harmonic number, H n ( m ) = k = 1 n 1 k m \displaystyle H_n^{(m)} = \sum_{k=1}^n \dfrac1{k^m} .


Inspiration .


The answer is 124.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 26, 2016

The sum is n = 1 H n ( 2 ) ( n + 1 ) 2 = n > m 1 1 m 2 n 2 = 1 2 m n 1 m 2 n 2 = 1 2 [ ( n = 1 1 n 2 ) 2 n = 1 1 n 4 ] = 1 2 [ ζ ( 2 ) 2 ζ ( 4 ) ] = 1 120 π 4 \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{H_n^{(2)}}{(n+1)^2} \; = \; \sum_{n > m \ge 1} \frac{1}{m^2n^2} & = & \displaystyle\tfrac12\sum_{m \neq n} \frac{1}{m^2n^2} \; = \; \frac12\left[\left(\sum_{n=1}^\infty \frac{1}{n^2}\right)^2 - \sum_{n=1}^\infty \frac{1}{n^4}\right] \\ & = & \tfrac12\big[\zeta(2)^2 - \zeta(4)\big] \; =\; \tfrac{1}{120}\pi^4 \end{array} making the answer 4 + 120 = 124 4 + 120 = \boxed{124} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...