Change of Bases Problem

Algebra Level pending

Consider the matrix A: R 3 R 2 \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} Given by,

[ 1 3 5 4 1 1 ] \begin{bmatrix}1&3&5 \\ 4&1&-1 \end{bmatrix}

Let e 1 e 2 e 3 e_{1} \, e_{2} \, e_{3} denote the standard basis and consider a new basis { v 1 , v 2 , v 3 } \{v_{1} , v_{2} , v_{3} \} for the domain and { w 1 , w 2 } \{w_{1} , w_{2} \} for the co-domain which are defined in terms of the standard basis as,

{ v 1 , v 2 , v 3 } = { e 1 + e 2 + e 3 , e 2 + e 3 , e 3 } \{ v_{1} , v_{2} , v_{3} \}= \{ e_{1}+e_{2}+e_{3},e_{2}+e_{3}, e_{3} \} { w 1 , w 2 } = { e 1 e 2 , e 2 } \{ w_{1} , w_{2} \}= \{ e_{1}-e_{2}, e_{2} \}

What is equivalent representation of L in these new bases?

[ 2 3 5 5 8 4 ] \begin{bmatrix}-2&3&5 \\ 5&8&-4 \end{bmatrix} [ 9 8 5 13 8 6 ] \begin{bmatrix}9&8&5 \\ 13&8&6 \end{bmatrix} [ 1 3 4 1 4 9 ] \begin{bmatrix}1&3\\ 4&1\\ 4 & -9 \end{bmatrix} [ 1 3 4 1 9 8 ] \begin{bmatrix}1&3 \\ 4&1& \\ 9&8 \end{bmatrix}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samuel Hansen
Apr 11, 2017

First construct the representation of the transformation from the u basis to the e basis, that is find the matrix P such that the ith column of P ^ \hat{P} is v i v_{i} expressed in the v i v_{i} basis. Call this matrix P, then

P = [ 1 0 0 1 1 0 1 1 1 ] P = \begin{bmatrix}1&0&0 \\ 1&1&0 \\ 1&1&1 \end{bmatrix}

Note that indeed, the vector [ 1 0 0 ] [ 1\, 0 \, 0]' expressed in this basis is e 1 + e 2 + e 3 e_{1}+e_{2}+e_{3} . Similarly we construct another matrix Q to go from the basis { w } \{w \} to basis { e } \{ e\} .

W = [ 1 0 1 1 ] W =\begin{bmatrix}1&0 \\ -1&1 \end{bmatrix}

Now to get from {v} to {w} via L we go from { v } R 3 { e } R 3 \{v\} \in \mathbb{R}^{3} \rightarrow \{e\} \in \mathbb{R}^{3} then use to the transform L to go from { e } R 3 { e } R 2 \{e\} \in \mathbb{R}^{3} \rightarrow \{e\} \in \mathbb{R}^{2} and then finally { e } R 2 { w } R 2 \{e\} \in \mathbb{R}^{2} \rightarrow \{w\} \in \mathbb{R}^{2} Thus the equivalent expression for L, call it L ^ \hat{L} is,

L ^ = Q 1 L P \hat{L}=Q^{-1} L P

Performing the matrix multiplication yields the desired result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...