Chasing an angle

Geometry Level pending

In A C B , D B C = 2 0 , D C B = 4 0 , D C A = 3 0 \triangle ACB, \angle DBC=20^\circ, \angle DCB=40^\circ, \angle DCA=30^\circ and D A C = 1 0 \angle DAC=10^\circ . Find A B D \angle ABD (in degrees).

45 65 60 55 50 40

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Compute some unknown angles.

B D C = 180 20 40 = 120 \angle BDC=180-20-40=120

A D C = 180 10 30 = 140 \angle ADC=180-10-30=140

A D B = 360 120 140 = 100 \angle ADB=360-120-140=100

Let A C = 1 AC=1 . Apply sine law on A D C \triangle ADC .

A D sin 30 = 1 sin 140 \dfrac{AD}{\sin 30}=\dfrac{1}{\sin 140} \implies A D = sin 30 sin 140 AD=\dfrac{\sin 30}{\sin 140}

C D sin 10 = 1 sin 140 \dfrac{CD}{\sin 10}=\dfrac{1}{\sin 140} \implies C D = sin 10 sin 140 CD=\dfrac{\sin 10}{\sin 140}

Apply sine law on B D C \triangle BDC .

B C sin 120 = C D sin 20 \dfrac{BC}{\sin 120}=\dfrac{CD}{\sin 20} \implies B C = sin 120 sin 20 ( sin 10 sin 140 ) BC=\dfrac{\sin 120}{\sin 20}\left(\dfrac{\sin 10}{\sin 140}\right)

Apply cosine law on A C B \triangle ACB .

A B 2 = ( sin 120 sin 10 sin 20 sin 140 ) 2 + 1 2 2 ( sin 120 sin 10 sin 20 sin 140 ) ( 1 ) ( cos 70 ) AB^2=\left(\dfrac{\sin120 \cdot \sin 10}{\sin 20 \cdot \sin 140}\right)^2+1^2-2\left(\dfrac{\sin 120 \cdot \sin 10}{\sin 20 \cdot \sin 140}\right)(1)(\cos 70)

A B = 1 AB=1

Apply sine law on A D B \triangle ADB .

sin A B D sin 30 sin 140 = sin 100 1 \dfrac{\sin \angle ABD}{\dfrac{\sin 30}{\sin 140}}=\dfrac{\sin 100}{1}

A B D = 5 0 \boxed{\angle ABD=50^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...