Chebyshev Magic

Geometry Level 5

In the rectangular plane, the graph uniquely presented by the quartic polynomial function a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x + a 0 a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 passes through the vertices of a regular pentagon A B C D E ABCDE inscribed in a unit circle centered at the origin, where the coordinates for one of the vertices is ( 0 , 1 ) (0,1) . It also passes through two other intersection points F F and G G , which form four more segments.

If the area ratio of A B C D E ABCDE to A B F C D G E ABFCDGE can be represented as

a b ( c + d e f ( g + h i ) ) \dfrac{a}{b}\left(c + d\sqrt{e} - \sqrt{f\left(g + h\sqrt{i}\right)}\right)

where

  • a , b , c , d , e , f , g , h , i a,b,c,d,e,f,g,h,i are positive integers
  • gcd ( a , b ) = gcd ( g , h ) = 1 \gcd(a,b) = \gcd(g,h) = 1
  • e , f , i e,f,i are square free

Input a + b + c + d + e + f + g + h + i a + b + c + d + e + f + g + h + i as your answer.


The answer is 1411.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Apr 3, 2021

The fourth Chebyshev polynomial T 4 ( x ) = 8 x 4 8 x 2 + 1 T_4(x) = 8x^4 - 8x^2 + 1 has the property that T 4 ( cos θ ) = cos 4 θ T_4(\cos\theta) = \cos4\theta for any θ \theta . But then T 4 ( sin 2 j π 5 ) = T 4 ( cos ( 1 2 π 2 j π 5 ) ) = cos ( 2 π 8 j π 5 ) = cos ( 2 j π 5 ) T_4\big(\sin\tfrac{2j\pi}{5}\big) \; = \; T_4\big(\cos(\tfrac12\pi - \tfrac{2j\pi}{5})\big) \; = \; \cos(2\pi - \tfrac{8j\pi}{5}) \; = \; \cos(\tfrac{2j\pi}{5}) for j = 0 , 1 , 2 , 3 , 4 j=0,1,2,3,4 , and so the curve y = T 4 ( x ) y = T_4(x) passes through A , B , C , D , E A,B,C,D,E . Also T 4 ( ± cos 1 6 π ) = cos 2 3 π = sin 1 6 π T_4\big(\pm\cos\tfrac16\pi\big) \; =\; \cos\tfrac23\pi \; = \; -\sin\tfrac16\pi and hence the curve y = T 4 ( x ) y = T_4(x) also passes through F , G F,G where F O A = G O A = 2 3 π \angle FOA = \angle GOA = \tfrac23\pi . If we let T = 1 2 sin 2 5 π T = \tfrac12\sin\tfrac25\pi , then A B C D E = 5 T A B F C D G E = 3 T + 2 ( 1 2 sin 4 15 π + 1 2 sin 2 15 π ) = 3 T + 2 sin 1 5 π cos 1 15 π = 3 T + 2 T cos 1 15 π cos 1 5 π A B F C D G E A B C D E = 3 cos 1 5 π + 2 cos 1 15 π 5 cos 1 5 π \begin{aligned} |ABCDE| & = \; 5T \\ |ABFCDGE| & = \; 3T + 2\left(\tfrac12\sin\tfrac{4}{15}\pi + \tfrac12\sin\tfrac{2}{15}\pi\right) \; =\; 3T + 2\sin\tfrac15\pi \cos\tfrac{1}{15}\pi \\ & =\; 3T + 2T\frac{\cos\frac{1}{15}\pi}{\cos\frac15\pi} \\ \frac{|ABFCDGE|}{|ABCDE|} & = \; \frac{3\cos\frac15\pi + 2\cos\frac{1}{15}\pi}{5\cos\frac15\pi} \end{aligned}

Now cos 1 5 π = 1 4 ( 5 + 1 ) cos ( 1 15 π ) = cos ( 2 5 π 1 3 π ) = 1 2 cos 2 5 π + 1 2 3 sin 2 5 π = 1 8 ( 5 1 + 3 10 + 2 5 ) = 1 8 ( 5 1 + 30 + 6 5 ) 3 cos 1 5 π + 2 cos 1 15 π = 1 4 ( 4 5 + 2 + 30 + 6 5 ) A B F C D G E A B C D E = 4 5 + 2 + 30 + 6 5 5 ( 5 + 1 ) = 9 5 + 30 6 5 10 \begin{aligned} \cos\tfrac15\pi & = \; \tfrac14\big(\sqrt{5} + 1\big) \\ \cos\big(\tfrac{1}{15}\pi\big) & = \; \cos\big(\tfrac25\pi - \tfrac13\pi\big) \; =\; \tfrac12\cos\tfrac25\pi + \tfrac12\sqrt{3}\sin\tfrac25\pi \\ & = \; \tfrac18\left(\sqrt{5}-1 + \sqrt{3}\sqrt{10 + 2\sqrt{5}}\right) \; =\; \tfrac18\left(\sqrt{5}-1 + \sqrt{30 + 6\sqrt{5}}\right) \\ 3\cos\tfrac15\pi + 2\cos\tfrac{1}{15}\pi & = \; \tfrac14\left(4\sqrt{5} + 2 + \sqrt{30 + 6\sqrt{5}}\right) \\ \frac{|ABFCDGE|}{|ABCDE|} & = \; \frac{4\sqrt{5} + 2 + \sqrt{30 + 6\sqrt{5}}}{5(\sqrt{5}+1)} \; = \; \frac{9-\sqrt{5} + \sqrt{30-6\sqrt{5}}}{10} \end{aligned} which is a much more elegant expression than its inverse, which is A B C D E A B F C D G E = 5 302 ( 111 + 13 5 6 ( 785 + 179 5 ) ) \frac{|ABCDE|}{|ABFCDGE|} \; = \; \frac{5}{302}\left(111 + 13\sqrt{5} - \sqrt{6(785 + 179\sqrt{5})}\right) making the answer 5 + 302 + 111 + 13 + 5 + 6 + 785 + 179 + 5 = 1411 5 + 302 + 111 + 13 + 5 + 6 + 785 + 179 + 5 = \boxed{1411} .

David Vreken
Apr 2, 2021

By the properties of a regular pentagon inscribed in a unit circle, the coordinates of some of its vertices are A ( 0 , 1 ) A(0, 1) , B ( cos π 10 , sin π 10 ) = B ( 5 8 + 5 8 , 1 4 + 5 4 ) B(\cos \frac{\pi}{10}, \sin \frac{\pi}{10}) = B(\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}, -\frac{1}{4} + \frac{\sqrt{5}}{4}) , and C ( cos 3 π 10 , sin 3 π 10 ) = C ( 5 8 5 8 , 1 4 5 4 ) C(\cos \frac{3\pi}{10}, -\sin \frac{3\pi}{10}) = C(\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}, -\frac{1}{4} - \frac{\sqrt{5}}{4}) , and its area is A A B C D E = 5 1 2 1 2 sin 2 π 5 = 5 2 5 8 + 5 8 A_{ABCDE} = 5 \cdot \frac{1}{2} \cdot 1^2 \cdot \sin \frac{2\pi}{5} = \frac{5}{2}\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}} .

Let ± a \pm a and ± b \pm b be the roots of the quartic polynomial, so that y = c ( x 2 a 2 ) ( x 2 b 2 ) y = c(x^2 - a^2)(x^2 - b^2) . Since A ( 0 , 1 ) A(0, 1) , B ( 5 8 + 5 8 , 1 4 + 5 4 ) B(\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}, -\frac{1}{4} + \frac{\sqrt{5}}{4}) , and C ( 5 8 5 8 , 1 4 5 4 ) C(\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}, -\frac{1}{4} - \frac{\sqrt{5}}{4}) are on this polynomial:

1 = c ( 0 2 a 2 ) ( 0 2 b 2 ) 1 = c(0^2 - a^2)(0^2 - b^2)

1 4 + 5 4 = c ( ( 5 8 + 5 8 ) 2 a 2 ) ( ( 5 8 + 5 8 ) 2 b 2 ) -\frac{1}{4} + \frac{\sqrt{5}}{4} = c\bigg(\bigg(\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}\bigg)^2 - a^2\bigg)\bigg(\bigg(\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}\bigg)^2 - b^2\bigg)

1 4 5 4 = c ( ( 5 8 5 8 ) 2 a 2 ) ( ( 5 8 5 8 ) 2 b 2 ) -\frac{1}{4} - \frac{\sqrt{5}}{4} = c\bigg(\bigg(\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\bigg)^2 - a^2\bigg)\bigg(\bigg(\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\bigg)^2 - b^2\bigg)

And these equations solve to a = 2 2 2 a = \frac{\sqrt{2 - \sqrt{2}}}{2} , b = 2 + 2 2 b = \frac{\sqrt{2 + \sqrt{2}}}{2} , and c = 8 c = 8 , so y = 8 ( x 2 ( 2 2 2 ) 2 ) ( x 2 ( 2 + 2 2 ) 2 ) y = 8(x^2 - (\frac{\sqrt{2 - \sqrt{2}}}{2})^2)(x^2 - (\frac{\sqrt{2 + \sqrt{2}}}{2})^2) , which simplifies to y = 8 x 4 8 x 2 + 1 y = 8x^4 - 8x^2 + 1 .

Since F F is on y = 8 x 4 8 x 2 + 1 y = 8x^4 - 8x^2 + 1 and the unit circle x 2 + y 2 = 1 x^2 + y^2 = 1 , it has coordinates F ( 3 2 , 1 2 ) F(\frac{\sqrt{3}}{2}, -\frac{1}{2}) .

The area of B C F \triangle BCF is then A B C F = 1 2 ( B x F x ) ( C y F y ) ( C x F x ) ( B y F y ) = 1 8 ( 15 5 + 2 5 ) A_{\triangle BCF} = \frac{1}{2}|(B_x - F_x)(C_y - F_y) - (C_x - F_x)(B_y - F_y)| = \frac{1}{8}(\sqrt{15} - \sqrt{5 + 2\sqrt{5}})

That means the area ratio of A B C D E ABCDE to A B F C D G E ABFCDGE is A A B C D E A A B C D E + 2 A B C F = 5 2 5 8 + 5 8 5 2 5 8 + 5 8 + 2 ( 1 8 ( 15 5 + 2 5 ) ) \cfrac{A_{ABCDE}}{A_{ABCDE} + 2A_{\triangle BCF}} = \cfrac{\frac{5}{2}\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}}}{\frac{5}{2}\sqrt{\frac{5}{8} + \frac{\sqrt{5}}{8}} + 2(\frac{1}{8}(\sqrt{15} - \sqrt{5 + 2\sqrt{5}}))} , which simplifies to:

5 302 ( 111 + 13 5 6 ( 785 + 179 5 ) ) \frac{5}{302}\bigg(111 + 13\sqrt{5} - \sqrt{6(785 + 179\sqrt{5})}\bigg)

Therefore, a = 5 a = 5 , b = 302 b = 302 , c = 111 c = 111 , d = 13 d = 13 , e = 5 e = 5 , f = 6 f = 6 , g = 785 g = 785 , h = 179 h = 179 , i = 5 i = 5 , and a + b + c + d + e + f + g + h + i = 1411 a + b + c + d + e + f + g + h + i = \boxed{1411} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...