Chebyshev Polynomial Practice: Product

Geometry Level 2

sec ( 2 0 ) sec ( 4 0 ) sec ( 8 0 ) = ? \sec(20^\circ)\sec(40^\circ)\sec(80^\circ) = \ ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Trevor Arashiro
Apr 13, 2015

Let T n T_n be the nth Chebyshev Polynomial where T n ( cos ( x ) ) = cos ( n x ) T_n(\cos(x))=\cos(nx)

Rearrange the equation to

sec ( 20 ) sec ( 100 ) sec ( 140 ) \sec(20)\sec(100)\sec(140)

Note that we can do this because we changes two signs using the identity cos ( x ) = cos ( 180 x ) \cos(x)=-\cos(180-x) .

We are looking at the CP T 3 ( x ) = 1 2 ~~T_3(x)=\frac{1}{2} . Since cos ( 60 ) = cos ( 300 ) = cos ( 420 ) = 1 2 \cos(60)=\cos(300)=\cos(420)=\frac{1}{2}

T o d d ( x ) T_{odd}(x) has no constant term so we have

T 3 ( x ) 1 2 = 4 x 3 3 x 1 2 = 0 T_3(x)-\frac{1}{2}=4x^3-3x-\frac{1}{2}=0

By vietas, the product of the roots is

1 2 4 = 1 8 -\cfrac{-\frac{1}{2}}{4}=\dfrac{1}{8}

Since sec ( x ) \sec(x) is the reciprocal of cos ( x ) \cos(x) , the product of the roots of sec ( x ) = 8 \sec(x)=8

A more simpler way, is to set cos ( 80 ) = sin ( 10 ) \cos(80) = \sin(10) , multiply top and bottom by cos ( 10 ) \cos(10) and apply double angle formula sin ( 2 A ) = 2 sin A cos A \sin(2A) = 2\sin A \cos A .

Pi Han Goh - 6 years, 2 months ago

Most likely non-Chebyshev approach, cos ( x ) cos ( 60 x ) cos ( 60 + x ) = . 25 cos ( 3 x ) \cos(x)\cos(60-x)\cos(60+x)=.25\cos(3x)

Thanks to @Pranjal Jain for this tip

Trevor Arashiro - 6 years, 2 months ago

Log in to reply

" . 25 cos ( 3 x ) .25 \cos(3x) "

Pi Han Goh - 6 years, 2 months ago

Log in to reply

Ah, thanks

Trevor Arashiro - 6 years, 2 months ago

My reaction My reaction

Prasun Biswas - 6 years, 2 months ago
Louis W
May 7, 2015

sec 20 sec 40 sec 80 = 1 cos 20 cos 40 cos 80 \sec20\sec40\sec80=\frac{1}{\cos20\cos40\cos80} = 1 1 2 ( cos 20 + cos 60 ) cos 80 = 1 1 2 cos 20 cos 80 + 1 4 cos 80 =\frac{1}{\frac{1}{2}(\cos20+\cos60)\cos80}=\frac{1}{\frac{1}{2}\cos20\cos80+\frac{1}{4}\cos80} = 1 1 2 ( 1 2 ( cos 60 + cos 100 ) ) + 1 4 cos 80 = 1 1 8 + 1 4 ( cos 100 + cos 80 ) =\frac{1}{\frac{1}{2}(\frac{1}{2}(\cos60+\cos100))+\frac{1}{4}\cos80}=\frac{1}{\frac{1}{8}+\frac{1}{4}(\cos100+\cos80)} = 1 1 8 + 1 4 ( 2 cos 90 cos 10 ) = 1 1 8 + 1 4 ( 0 ) = 1 1 8 = 8 =\frac{1}{\frac{1}{8}+\frac{1}{4}(2\cos90\cos10)}=\frac{1}{\frac{1}{8}+\frac{1}{4}(0)}=\frac{1}{\frac{1}{8}}=\bf 8 \space\space\space\Box

Rohit Khatri
May 7, 2015

sec(20)sec(40)sec(80)= 4sec3 20 =4 sec60 =4 2=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...