Chebyshev polynomial practice: medium hard product

Geometry Level 3

n = 1 2016 sec ( n π 2017 ) \large \displaystyle \prod_{n=1}^{2016} \sec\left(\dfrac{n\pi}{2017}\right)

Evaluate the product above.

Given that the above is equal to a b a^b where a is a prime number, find a + b a+b .

Inspired by this problem when I solved it in 3 steps... All of which were wrong, but somehow I got the right answer.


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Satyajit Mohanty
Aug 31, 2015

Let z = e i θ = x + i y z = e^{i\theta} = x+iy . Then:

cos ( ( 2 n + 1 ) θ ) = R e ( z 2 n + 1 ) = k = 0 n ( 2 n + 1 2 k ) x 2 ( n k ) + 1 ( i y ) 2 k \cos((2n+1)\theta) = Re(z^{2n+1}) = \displaystyle \sum_{k=0}^n \binom{2n+1}{2k} x^{2(n-k)+1} (iy)^{2k} = k = 0 n ( 1 ) k ( 2 n + 1 2 k ) x 2 ( n k ) + 1 ( 1 x 2 ) k = \displaystyle \sum_{k=0}^n (-1)^k \binom{2n+1}{2k} x^{2(n-k)+1} (1-x^2)^k

which we denote as f ( x ) f(x) . It's easy to see that:

f ( x ) = a 2 n + 1 x 2 n + 1 + + a 1 x 1 . . . ( 1 ) f(x) = a_{2n+1}x^{2n+1} + \ldots + a_1x^1 \quad ...(1)

where

a 1 = ( 1 ) n ( 2 n + 1 2 n ) = ( 1 ) n ( 2 n + 1 ) . . . ( 2 ) a_1 = (-1)^n \binom{2n+1}{2n} = (-1)^n (2n+1) \quad ...(2)

On the other hand, since cos ( ( 2 n + 1 ) θ ) = 1 2 ( z 2 n + 1 + 1 z 2 n + 1 ) = 1 + 1 2 ( z 2 n + 1 + 1 z 2 n + 1 2 ) \cos((2n+1)\theta) = \dfrac12 \left( z^{2n+1} + \dfrac{1}{z^{2n+1}} \right) = 1 + \dfrac12 \left( z^{2n+1} + \dfrac{1}{z^{2n+1}} -2 \right)

= 1 + 1 2 z 2 n + 1 ( z 2 n + 1 1 ) 2 = 1 + \dfrac{1}{2z^{2n+1}}(z^{2n+1} - 1)^2 and

( z 2 n + 1 1 ) 2 = k = 0 2 n ( z e 2 k π i 2 n + 1 ) 2 = k = 0 2 n ( z e 2 k π i 2 n + 1 ) ( z e 2 k π i 2 n + 1 ) (z^{2n+1} - 1)^2 = \displaystyle \prod_{k=0}^{2n} \left( z-e^{\frac{2k\pi i}{2n+1}} \right)^2 = \prod_{k=0}^{2n} \left(z-e^{\frac{2k\pi i}{2n+1}} \right) \left(z-e^{\frac{-2k\pi i}{2n+1}} \right)

= k = 0 2 n ( z 2 + 1 2 z cos ( 2 k π 2 n + 1 ) ) = \displaystyle \prod_{k=0}^{2n} \left( z^2 + 1 - 2z \cos \left( \dfrac{2k\pi}{2n+1} \right) \right)

We also have:

f ( x ) = 1 + 1 2 k = 0 2 n ( z + 1 z 2 cos ( 2 k π 2 n + 1 ) ) f(x) = 1 + \dfrac12 \prod_{k=0}^{2n} \left( z + \dfrac1z - 2 \cos \left( \dfrac{2k\pi}{2n+1} \right) \right)

= 1 + 2 2 n k = 0 2 n ( x 2 cos ( 2 k π 2 n + 1 ) ) . . . ( 3 ) = 1 + 2^{2n} \prod_{k=0}^{2n} \left( x - 2 \cos \left( \dfrac{2k\pi}{2n+1} \right) \right) \quad ...(3)

Now we compare the expressions ( 1 ) (1) and ( 3 ) (3) for f ( x ) f(x) . We see from ( 1 ) (1) that the constant term in ( 3 ) (3) is zero. Therefore:

2 2 n k = 0 2 n cos ( 2 k π 2 n + 1 ) = 1 k = 0 2 n sec ( 2 k π 2 n + 1 ) = 2 2 n 2^{2n} \prod_{k=0}^{2n} \cos \left( \dfrac{2k\pi}{2n+1} \right) = 1 \quad \Longrightarrow \prod_{k=0}^{2n} \sec \left( \dfrac{2k\pi}{2n+1} \right) = 2^{2n}

In the problem, we are given n = 1008 n=1008 , so the answer to the problem would be 2 2 1008 = 2 2016 2^{2 \cdot 1008} = 2^{2016} . Thus a = 2 , b = 2016 , a + b = 2018 a = 2, b = 2016, a+b= \boxed{2018} .

WolframAlpha

solve {product(sec(n pi/2017)), n=1 to 2016}=2^b

as a is prime use the first prime >1

b=2016 a+b=2018

Harout G. Vartanian - 4 years, 2 months ago
Trevor Arashiro
Apr 30, 2015

Let T n T_n be the nth Chebyshev Polynomial where T n ( cos ( x ) ) = cos ( n x ) T_n(\cos(x))=\cos(nx)

We are looking at a product of 2017 terms from

n = 0 2016 sec ( n π 2017 ) \large \displaystyle \prod_{n=0}^{2016} \sec\left(\dfrac{n\pi}{2017}\right)

We can make each term a root of the polynomial T 2017 ( n ) = 1 T_{2017}(n)=1

Now, the trick here is to realize that not every term of c o s ( n π ) cos(n\pi) is equal to 1. 1008 are odd n and are equal to -1. To accommodate this, we shift every odd term π \pi to the right (we add \pi). This won't change the value of the equation so it won't change the polynomial value either.

Now, for the product of the roots, we need the constant term divided by the lead coefficient. The constant term will be -1 of course and the lead coefficient 2 n 1 = 2 2016 2^{n-1}=2^{2016}

T 2017 ( x ) 1 = 2 2016 x 2017 + stuff 1 T_{2017}(x)-1=2^{2016}x^{2017}+\text{stuff}-1

Product of roots

1 2 2016 \dfrac{1}{2^{2016}}

So sec ( x ) \sec(x) is

2 2016 2^{2016}

Mateus Gomes
Feb 10, 2016

n = 1 2016 sec ( n π 2017 ) = 1 n = 1 2016 cos ( n π 2017 ) \large \displaystyle \prod_{n=1}^{2016} \sec\left(\dfrac{n\pi}{2017}\right)=\frac{1}{\displaystyle \prod \limits^{2016}_{n=1}\cos \left( \frac{n\pi }{2017} \right)} x = n = 1 2016 cos ( n π 2017 ) x = \displaystyle \prod \limits^{2016}_{n=1}\cos \left( \frac{n\pi }{2017} \right) y = n = 1 2016 sin ( n π 2017 ) y = \displaystyle\prod \limits^{2016}_{n=1}\sin\left( \frac{n\pi }{2017} \right) x . y = n = 1 2016 sin ( n π 2017 ) cos ( n π 2017 ) x. y =\displaystyle\prod \limits^{2016}_{n=1}\sin\left( \frac{n\pi }{2017} \right) \cos \left( \frac{n\pi }{2017} \right) x . y = 1 2 n = 1 2016 sin ( 2 n π 2017 ) = ( 1 2 ) 2016 [ sin ( 2 π 2017 ) sin ( 4 π 2017 ) sin ( 14 π 2017 ) sin ( 16 π 2017 ) sin ( 18 π 2017 ) sin ( 4032 π 2017 ) ] x. y = \displaystyle\frac{1}{2}\prod_{n=1}^{2016}\sin\left( \frac{2n\pi}{2017} \right) = \bigg(\frac{1}{2}\bigg)^{2016}[\sin \left( \frac{2\pi }{2017} \right) \sin \left( \frac{4\pi }{2017} \right) \cdots \sin \left( \frac{14\pi }{2017} \right) \sin \left( \frac{16\pi }{2017} \right) \sin \left( \frac{18\pi }{2017} \right) \cdots \sin \left( \frac{4032\pi }{2017} \right)] θ + α = 2 π sin ( θ ) = sin ( 2 π α ) \color{#3D99F6}{\boxed{\color{forestgreen}{\boxed{\theta+\alpha=2\pi \rightarrow \sin(\theta)=-\sin(2\pi-\alpha)}}}} x . y = 1 2 n = 1 2016 sin ( 2 n π 2017 ) = ( 1 2 ) 2016 ( 1 ) 1008 [ n = 1 2016 sin ( n π 2017 ) ] x. y = \displaystyle\frac{1}{2}\prod_{n=1}^{2016}\sin\left( \frac{2n\pi}{2017} \right) = \bigg(\frac{1}{2}\bigg)^{2016}(-1)^{1008}[\displaystyle\prod \limits^{2016}_{n=1}\sin\left( \frac{n\pi }{2017} \right) ] x . y = ( 1 2 ) 2016 ( 1 ) 1008 . y x. y =\left( \frac{1}{2} \right) ^{2016}\left( -1\right) ^{1008}. y x = ( 1 2 ) 2016 x =\left( \frac{1}{2} \right) ^{2016} 1 x = ( 2 ) 2016 = a b \frac{1}{x} =\left({2}\right) ^{2016}=a^b A + B = 2018 \Large\color{#3D99F6}{\boxed{\color{forestgreen}{\boxed{A+B=2018}}}}

Just to get something posted, I used the identity here to get an answer of

2 2017 1 = 2 2016 a + b = 2 + 2016 = 2018 . 2^{2017 - 1} = 2^{2016} \Longrightarrow a + b = 2 + 2016 = \boxed{2018}.

A variety of proof techniques are provided in the link, including a Chebyshev-inspired one.

@Trevor Arashiro , post your solution!

Pi Han Goh - 6 years, 1 month ago

Log in to reply

Done! I solved your problem this exact way, but I divided the linear term (2017) by the lead term. Then input my answer forgetting I divided by 2 2016 2^{2016} .

But now I realize that this is correct but not for the corect reasons.

Trevor Arashiro - 6 years, 1 month ago

Log in to reply

Best line: T 2017 ( x ) 1 = 2 2016 x 2017 + stuff 1 T_{2017}(x)-1=2^{2016}x^{2017}+\text{stuff}-1

Pi Han Goh - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...