Check for Convergence

Calculus Level 2

n = 1 n n sin ( 1 n ) n 4 \large \sum _{ n=1 }^{ \infty }{ \sqrt { \frac { n-n\sin { \left(\frac { 1 }{ n } \right) } }{ { n }^{ 4 } } } }

Check if the sum above converges.

The sum diverges The sum converges to a finite value

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 27, 2017

S = n = 1 n n sin 1 n n 4 = n = 1 1 sin 1 n n 3 By Maclaurin series = n = 1 1 ( 1 n 1 3 ! n 3 + 1 5 ! n 5 . . . ) n 3 = n = 1 1 n 3 1 n 4 + 1 3 ! n 6 + 1 5 ! n 8 . . . < n = 1 1 n 3 = ζ ( 3 2 ) 2.612 ζ ( ) is the Riemann zeta function \begin{aligned} S & = \sum_{n=1}^\infty \sqrt{\frac {n-n\sin \frac 1n}{n^4}} \\ & = \sum_{n=1}^\infty \sqrt{\frac {1-{\color{#3D99F6}\sin \frac 1n}}{n^3}} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \sum_{n=1}^\infty \sqrt{\frac {1-{\color{#3D99F6}\left( \frac 1n - \frac 1{3!n^3}+\frac 1{5!n^5} - ... \right)}}{n^3}} \\ & = \sum_{n=1}^\infty \sqrt{\frac 1{n^3} - \frac 1{n^4} + \frac 1{3!n^6} + \frac 1{5!n^8} - ... } \\ & < \sum_{n=1}^\infty \sqrt{\frac 1{n^3}} = {\color{#3D99F6}\zeta \left(\frac 32\right)} \approx 2.612 & \small \color{#3D99F6} \zeta(\cdot) \text{ is the Riemann zeta function} \end{aligned}

Therefore, the sum S = n = 1 n n sin 1 n n 4 \displaystyle S = \sum_{n=1}^\infty \sqrt{\frac {n-n\sin \frac 1n}{n^4}} converges to a finite value.

Hana Wehbi
Mar 30, 2017

By the Weierstrass test or the M-test the given series is less than 1 n 2 \large\frac{1}{n^2} which is a p p- series of degree 2 2 which converges. Technically, it is similar to the comparison test of series, in some way.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...