Cheeky double integral

Calculus Level 3

Compute the double integral:

1 e 2 2 x 2 ln ( y ) y + e x y d x d y \int_1^e \int_{-2}^2 \frac{x^2\ln(y)}{y+e^xy} dx\ dy

If this integral evaluates to a b \dfrac{a}{b} , where a a and b b are positive coprime integers, enter a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 25, 2019

I = 1 e 2 2 x 2 ln y y + e x y d x d y = 1 e ln y y 2 2 x 2 1 + e x d x d y See proof: a a f ( x ) 1 + c g ( x ) d x = 0 a f ( x ) d x = 1 e ln y y 0 2 x 2 d x d y where f ( x ) is even and g ( x ) odd. = 8 3 1 e ln y y d y By integration by parts = 8 3 ( ln 2 y 1 e 1 e ln y y d y ) Note that 1 e ln y y d y = ln 2 y 1 e 1 e ln y y d y = 8 3 × 1 2 [ ln 2 y ] 1 e = 8 3 × 1 2 = 4 3 \begin{aligned} I & = \int_1^e \int_{-2}^2 \frac {x^2 \ln y}{y+e^x y}dx\ dy \\ & = \int_1^e \frac {\ln y}y {\color{#3D99F6} \int_{-2}^2 \frac {x^2}{1+e^x}dx}\ dy & \small \color{#3D99F6} \text{See proof: } \int_{-a}^a \frac {f(x)}{1+c^{g(x)}} dx = \int_0^a f(x)\ dx \\ & = \int_1^e \frac {\ln y}y {\color{#3D99F6} \int_0^2 x^2\ dx}\ dy & \small \color{#3D99F6} \text{where }f(x) \text{ is even and }g(x) \text{ odd.} \\ & = \color{#3D99F6} \frac 83 \color{#D61F06} \int_1^e \frac {\ln y}y \ dy & \small \color{#D61F06} \text{By integration by parts} \\ & = \frac 83 \color{#D61F06} \left(\ln^2y \ \bigg|_1^e - \int_1^e \frac {\ln y}y \ dy \right) & \small \color{#D61F06} \text{Note that } \int_1^e \frac {\ln y}y \ dy = \ln^2y \ \bigg|_1^e - \int_1^e \frac {\ln y}y \ dy \\ & = \frac 83 \times \color{#D61F06} \frac 12 \bigg[\ln^2y \bigg]_1^e \\ & = \frac 83 \times {\color{#D61F06} \frac 12} = \frac 43 \end{aligned}

Therefore, a + b = 4 + 3 = 7 a+b = 4+3 = \boxed 7 .


Proof for a a f ( x ) 1 + c g ( x ) d x = 0 a f ( x ) d x \small \displaystyle \int_{-a}^a \frac {f(x)}{1+c^{g(x)}} dx = \int_0^a f(x)\ dx for even f ( x ) f(x) and odd g ( x ) g(x) .

Karan Chatrath
Aug 25, 2019

The given double integral after some rearrangement is:

I = 1 e 2 2 ( x 2 1 + e x ) ( ln ( y ) y ) d x d y I = \int_{1}^{e} \int_{-2}^{2} \left(\frac{x^2}{1+e^x}\right)\left(\frac{\ln(y)}{y}\right)dxdy

Now, since the limits of integration are constant, the integral can be rewritten as:

I = ( 1 e ln ( y ) y d y ) ( 2 2 x 2 1 + e x d x ) = I 1 I 2 I = \left(\int_{1}^{e}\frac{\ln(y)}{y}dy\right)\left(\int_{-2}^{2}\frac{x^2}{1+e^x}dx\right) = I_1I_2

I 1 = 1 e ln ( y ) y d y I_1 = \int_{1}^{e}\frac{\ln(y)}{y}dy

Taking ln ( y ) = z \ln(y) = z transforms the integral to:

I 1 = 0 1 z d z = 1 2 I_1 = \int_{0}^{1}z dz = \frac{1}{2}

Now:

I 2 = 2 2 x 2 1 + e x d x = 2 2 x 2 1 + e x d x I_2 = \int_{-2}^{2}\frac{x^2}{1+e^x}dx = \int_{-2}^{2}\frac{x^2}{1+e^{-x}}dx

Therefore:

2 I 2 = 2 2 x 2 d x I 2 = 8 3 2I_2 = \int_{-2}^{2}x^2 dx \implies I_2 = \frac{8}{3}

Finally:

I = I 1 I 2 = 4 3 \boxed{I = I_1I_2 = \frac{4}{3}}

Note:

If a a , b b , c c and d d are constants, then:

J = a b c d f ( x ) g ( y ) d x d y = ( a b g ( y ) d y ) ( c d f ( x ) d x ) \boxed{J = \int_{a}^{b} \int_{c}^{d} f(x)g(y)dxdy = \left(\int_{a}^{b}g(y)dy\right)\left(\int_{c}^{d} f(x)dx\right)}

Why are those integrals fromthe first time you mention I2 equal?

Peter van der Linden - 1 year, 7 months ago

Log in to reply

Property:

a b f ( x ) d x = a b f ( a + b x ) d x \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x)dx

Karan Chatrath - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...