Cheesy Equation

Algebra Level 5

The sum of all real values of k k for which the equation

x 2 ( 7 + k 2 ) x + 7 k 2 + ( x 3 ) ( x 3 k + 2 ) = 0 \large{ |x^2-(7+k^2) x+7 k^2|+\sqrt{(x-3)(x-3 k+2)}=0}

has at least one real solution is A A . Then value of A A is


For more problems try my set


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2016

We note that x 2 ( 7 + k 2 ) x + 7 k 2 0 |x^2-(7+k^2)x+7k^2| \ge 0 and ( x 3 ) ( x 3 k + 2 ) 0 \sqrt{(x-3)(x-3k+2)} \ge 0 , then x 2 ( 7 + k 2 ) x + 7 k 2 + ( x 3 ) ( x 3 k + 2 ) = 0 |x^2-(7+k^2)x+7k^2| + \sqrt{(x-3)(x-3k+2)} = 0 , when simultaneously,

{ x 2 ( 7 + k 2 ) x + 7 k 2 = ( x 7 ) ( x k 2 ) = 0 . . . ( 1 ) ( x 3 ) ( x 3 k + 2 ) = 0 . . . ( 2 ) \begin{cases} |x^2-(7+k^2)x+7k^2| = |(x-7)(x-k^2)| = 0 & ...(1) \\ \sqrt{(x-3)(x-3k+2)} = 0 & ...(2) \end{cases}

For ( 1 ) = 0 ( x 7 ) ( x k 2 ) = 0 (1) = 0 \quad \Rightarrow (x-7)(x-k^2) = 0

{ x = 7 ( 2 ) : 4 ( 7 3 k + 2 ) = 0 k = 3 x = k 2 ( 2 ) : ( k 2 3 ) ( k 2 3 k + 2 ) = 0 ( k 2 3 ) ( k 1 ) ( k 2 ) = 0 k = ± 3 , 1 , 2 \Rightarrow \begin{cases} x = 7 & \Rightarrow (2): 4(7-3k+2) = 0 & \Rightarrow k = 3 \\ x = k^2 & \Rightarrow (2): (k^2-3)(k^2-3k+2) = 0 \\ & \quad \quad \quad \space (k^2-3)(k-1)(k-2) = 0 & \Rightarrow k = \pm \sqrt{3}, 1, 2 \end{cases}

For ( 2 ) = 0 ( x 3 ) ( x 3 k + 2 ) = 0 (2) = 0 \quad \Rightarrow (x-3)(x-3k+2) = 0

{ x = 3 ( 1 ) : 4 ( 3 k 2 ) = 0 k = ± 3 x = 3 k 2 ( 1 ) : ( 3 k 9 ) ( 3 k k 2 + 2 ) = 0 ( k 3 ) ( k 1 ) ( k 2 ) = 0 k = 3 , 1 , 2 \Rightarrow \begin{cases} x = 3 & \Rightarrow (1): -4(3-k^2) = 0 & \Rightarrow k = \pm \sqrt{3} \\ x = 3k-2 & \Rightarrow (1): (3k-9)(3k-k^2+2) = 0 \\ & \quad \quad \quad \space (k-3)(k-1)(k-2) = 0 & \Rightarrow k = 3, 1, 2 \end{cases}

Therefore, the sum of all real values of k k = 3 + 1 + 3 + 2 + 3 = 6 = -\sqrt{3} + 1 + \sqrt{3} + 2 + 3 = \boxed{6}

Exactly the same way

Aakash Khandelwal - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...