Child's Play

Calculus Level 1

The value of lim x->1 [ (x+x^2+.............x^n-n)/(x-1)] is

n n(n+1)/2 (n+1)/2 n(n-1)/2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Greg Johnson
Jan 6, 2015

As the limit approaches 1, the numerator and denominator are indeterminate, with the numerator yielding zero, and the denominator yielding zero as well. The problem is a candidate for applying l'Hopital's rule.

Setting up definitions for f(x) and g(x):

lim x 1 f ( x ) = lim x 1 ( x + x 2 + x 3 + . . . + x n + n ) = 0 lim x 1 g ( x ) = lim x 1 ( x 1 ) = 0 lim x 1 f ( x ) g ( x ) = ? A p p l y i n g l H o p i t a l s r u l e , w e f i n d : lim x 1 f ( x ) g ( x ) w h e r e f ( x ) = 1 + 2 x + 3 x 2 + . . . + n x n 1 + 0 g ( x ) = 1 T h e l i m i t t h e n r e d u c e s t o t h e s u m o f i n t e g e r s t o n : n ( n + 1 ) 2 \lim _{ x\to 1 } f(x)\quad =\quad \lim _{ x\to 1 } (x+{ x }^{ 2 }+{ x }^{ 3 }+...+{ x }^{ n }+n)\quad =\quad 0\\ \\ \lim _{ x\to 1 } g(x)\quad =\quad \lim _{ x\to 1 } (x-1)\quad =\quad 0\\ \\ \lim _{ x\to 1 } \frac { f(x) }{ g(x) } \quad =\quad ?\\ \\ Applying\quad l'Hopital's\quad rule,\quad we\quad find:\\ \lim _{ x\to 1 } \frac { f'(x) }{ g'(x) } \\ \\ where\\ \\ f'(x)\quad =\quad 1+2x+3{ x }^{ 2 }+...+n{ x }^{ n-1 }+0\\ \\ g'(x)\quad =\quad 1\\ \\ The\quad limit\quad then\quad reduces\quad to\quad the\quad sum\quad of\quad integers\quad to\quad n:\\ \\ \boxed { \frac { n(n+1) }{ 2 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...